GetFreeCourses.Co-Udemy-Machine Learning & Data Science A-Z Hands-on Python 2021 收录时间:2021-06-01 18:57:42 文件大小:7GB 下载次数:1 最近下载:2021-06-01 18:57:42 磁力链接: magnet:?xt=urn:btih:010a2d06b48e96164b9085997f682f486bf13ab1 立即下载 复制链接 文件列表 6. Supervised Learning - Regression/8. Random Forest Model Development.mp4 246MB 5. Supervised Learning - Classification/1. Supervised Learning Models - Introduction and Understanding the Data.mp4 234MB 5. Supervised Learning - Classification/4. k-NN Training-Set and Test-Set Creation.mp4 228MB 3. Data Preprocessing/6. Missing Values2.mp4 219MB 6. Supervised Learning - Regression/1. Simple and Multiple Linear Regression Concepts.mp4 212MB 3. Data Preprocessing/3. Statistics2.mp4 207MB 6. Supervised Learning - Regression/6. Polynomial Linear Regression Model Development.mp4 207MB 2. Machine Learning Useful Packages (Libraries)/13. Visualization with Matplotlib2.mp4 205MB 2. Machine Learning Useful Packages (Libraries)/11. Pandas4.mp4 203MB 2. Machine Learning Useful Packages (Libraries)/14. Visualization with Matplotlib3.mp4 189MB 3. Data Preprocessing/12. Normalization.mp4 187MB 5. Supervised Learning - Classification/13. Model Evaluation - Calculating with Python.mp4 174MB 6. Supervised Learning - Regression/4. Evaluation Metrics - Implementation.mp4 160MB 3. Data Preprocessing/1. Reading and Modifying a Dataset.mp4 155MB 2. Machine Learning Useful Packages (Libraries)/6. NumPy5.mp4 153MB 7. Unsupervised Learning - Clustering Techniques/10. Hierarchical Clustering Model Development.mp4 146MB 2. Machine Learning Useful Packages (Libraries)/15. Visualization with Matplotlib4.mp4 143MB 5. Supervised Learning - Classification/3. k-NN Model Development.mp4 141MB 2. Machine Learning Useful Packages (Libraries)/7. NumPy6.mp4 134MB 8. Hyper Parameter Optimization (Model Tuning)/4. k-NN - Model Tuning.mp4 134MB 3. Data Preprocessing/8. Outlier Detection2.mp4 131MB 3. Data Preprocessing/5. Missing Values1.mp4 130MB 2. Machine Learning Useful Packages (Libraries)/16. Visualization with Matplotlib5.mp4 129MB 8. Hyper Parameter Optimization (Model Tuning)/2. Support Vector Regression - Model Tuning.mp4 126MB 6. Supervised Learning - Regression/10. Support Vector Regression Model Development.mp4 121MB 2. Machine Learning Useful Packages (Libraries)/10. Pandas3.mp4 118MB 2. Machine Learning Useful Packages (Libraries)/9. Pandas2.mp4 117MB 5. Supervised Learning - Classification/11. Logistic Regression Model Development.mp4 112MB 3. Data Preprocessing/4. Statistics3 - Covariance.mp4 107MB 7. Unsupervised Learning - Clustering Techniques/5. K-means Model Development2.mp4 104MB 7. Unsupervised Learning - Clustering Techniques/6. K-means - Model Evaluation.mp4 102MB 2. Machine Learning Useful Packages (Libraries)/12. Visualization with Matplotlib1.mp4 99MB 2. Machine Learning Useful Packages (Libraries)/8. Pandas1.mp4 96MB 7. Unsupervised Learning - Clustering Techniques/8. DBSCAN Model Development.mp4 87MB 2. Machine Learning Useful Packages (Libraries)/4. NumPy3.mp4 85MB 5. Supervised Learning - Classification/12. Model Evaluation Concepts.mp4 83MB 6. Supervised Learning - Regression/2. Multiple Linear Regression - Model Development.mp4 76MB 3. Data Preprocessing/7. Outlier Detection1.mp4 73MB 8. Hyper Parameter Optimization (Model Tuning)/5. Overfitting and Underfitting.mp4 72MB 1. Introduction/6. Installation of Required Libraries.mp4 71MB 5. Supervised Learning - Classification/6. Decision Tree Model Development.mp4 67MB 3. Data Preprocessing/10. Concatenation.mp4 66MB 5. Supervised Learning - Classification/8. Naive Bayes Concepts.mp4 59MB 5. Supervised Learning - Classification/9. Naive Bayes Model Development.mp4 59MB 3. Data Preprocessing/11. Dummy Variable.mp4 58MB 2. Machine Learning Useful Packages (Libraries)/3. NumPy2.mp4 57MB 2. Machine Learning Useful Packages (Libraries)/5. NumPy4.mp4 57MB 5. Supervised Learning - Classification/7. Decision Tree - Cross Validation.mp4 55MB 6. Supervised Learning - Regression/3. Evaluation Metrics - Concepts.mp4 49MB 5. Supervised Learning - Classification/2. k-NN Concepts.mp4 48MB 1. Introduction/7. Spyder Interface.mp4 46MB 4. Machine Learning Introduction/1. Learning Types.mp4 45MB 7. Unsupervised Learning - Clustering Techniques/2. K-means Concepts1.mp4 45MB 7. Unsupervised Learning - Clustering Techniques/1. Introduction.mp4 38MB 2. Machine Learning Useful Packages (Libraries)/2. NumPy1.mp4 37MB 7. Unsupervised Learning - Clustering Techniques/4. K-means Model Development1.mp4 36MB 3. Data Preprocessing/2. Statistics1.mp4 34MB 3. Data Preprocessing/9. Outlier Detection3.mp4 31MB 6. Supervised Learning - Regression/7. Random Forest Concepts.mp4 30MB 6. Supervised Learning - Regression/9. Support Vector Regression Concepts.mp4 27MB 7. Unsupervised Learning - Clustering Techniques/7. DBSCAN Concepts.mp4 27MB 6. Supervised Learning - Regression/5. Polynomial Linear Regression Concepts.mp4 26MB 1. Introduction/2. What is Machine Learning Some Basic Terms.mp4 26MB 5. Supervised Learning - Classification/5. Decision Tree Concepts.mp4 26MB 7. Unsupervised Learning - Clustering Techniques/9. Hierarchical Clustering Concepts.mp4 24MB 1. Introduction/5. IDE Installation.mp4 22MB 7. Unsupervised Learning - Clustering Techniques/3. K-means Concepts2.mp4 21MB 1. Introduction/1. Course Content.mp4 17MB 8. Hyper Parameter Optimization (Model Tuning)/1. Introduction.mp4 17MB 8. Hyper Parameter Optimization (Model Tuning)/3. K-Means - Model Tuning.mp4 15MB 5. Supervised Learning - Classification/10. Logistic Regression Concepts.mp4 11MB 1. Introduction/4. Python IDE.mp4 8MB 5. Supervised Learning - Classification/1. Supervised Learning Models - Introduction and Understanding the Data.srt 33KB 6. Supervised Learning - Regression/1. Simple and Multiple Linear Regression Concepts.srt 31KB 5. Supervised Learning - Classification/4. k-NN Training-Set and Test-Set Creation.srt 28KB 2. Machine Learning Useful Packages (Libraries)/11. Pandas4.srt 27KB 2. Machine Learning Useful Packages (Libraries)/13. Visualization with Matplotlib2.srt 26KB 6. Supervised Learning - Regression/8. Random Forest Model Development.srt 25KB 3. Data Preprocessing/6. Missing Values2.srt 22KB 3. Data Preprocessing/1. Reading and Modifying a Dataset.srt 22KB 3. Data Preprocessing/12. Normalization.srt 22KB 3. Data Preprocessing/3. Statistics2.srt 22KB 6. Supervised Learning - Regression/6. Polynomial Linear Regression Model Development.srt 21KB 5. Supervised Learning - Classification/13. Model Evaluation - Calculating with Python.srt 20KB 2. Machine Learning Useful Packages (Libraries)/14. Visualization with Matplotlib3.srt 20KB 5. Supervised Learning - Classification/12. Model Evaluation Concepts.srt 19KB 2. Machine Learning Useful Packages (Libraries)/6. NumPy5.srt 19KB 2. Machine Learning Useful Packages (Libraries)/7. NumPy6.srt 18KB 6. Supervised Learning - Regression/4. Evaluation Metrics - Implementation.srt 18KB 7. Unsupervised Learning - Clustering Techniques/10. Hierarchical Clustering Model Development.srt 18KB 2. Machine Learning Useful Packages (Libraries)/9. Pandas2.srt 17KB 2. Machine Learning Useful Packages (Libraries)/8. Pandas1.srt 17KB 2. Machine Learning Useful Packages (Libraries)/15. Visualization with Matplotlib4.srt 17KB 2. Machine Learning Useful Packages (Libraries)/10. Pandas3.srt 17KB 5. Supervised Learning - Classification/3. k-NN Model Development.srt 17KB 5. Supervised Learning - Classification/8. Naive Bayes Concepts.srt 16KB 2. Machine Learning Useful Packages (Libraries)/12. Visualization with Matplotlib1.srt 16KB 3. Data Preprocessing/4. Statistics3 - Covariance.srt 16KB 3. Data Preprocessing/8. Outlier Detection2.srt 15KB 2. Machine Learning Useful Packages (Libraries)/16. Visualization with Matplotlib5.srt 14KB 3. Data Preprocessing/5. Missing Values1.srt 14KB 7. Unsupervised Learning - Clustering Techniques/5. K-means Model Development2.srt 14KB 2. Machine Learning Useful Packages (Libraries)/4. NumPy3.srt 14KB 8. Hyper Parameter Optimization (Model Tuning)/2. Support Vector Regression - Model Tuning.srt 14KB 3. Data Preprocessing/7. Outlier Detection1.srt 13KB 8. Hyper Parameter Optimization (Model Tuning)/4. k-NN - Model Tuning.srt 13KB 6. Supervised Learning - Regression/3. Evaluation Metrics - Concepts.srt 13KB 5. Supervised Learning - Classification/11. Logistic Regression Model Development.srt 12KB 7. Unsupervised Learning - Clustering Techniques/6. K-means - Model Evaluation.srt 12KB 5. Supervised Learning - Classification/2. k-NN Concepts.srt 12KB 6. Supervised Learning - Regression/10. Support Vector Regression Model Development.srt 11KB 7. Unsupervised Learning - Clustering Techniques/2. K-means Concepts1.srt 11KB 8. Hyper Parameter Optimization (Model Tuning)/5. Overfitting and Underfitting.srt 11KB 7. Unsupervised Learning - Clustering Techniques/8. DBSCAN Model Development.srt 10KB 3. Data Preprocessing/2. Statistics1.srt 10KB 2. Machine Learning Useful Packages (Libraries)/3. NumPy2.srt 10KB 5. Supervised Learning - Classification/7. Decision Tree - Cross Validation.srt 10KB 1. Introduction/7. Spyder Interface.srt 9KB 4. Machine Learning Introduction/1. Learning Types.srt 9KB 6. Supervised Learning - Regression/2. Multiple Linear Regression - Model Development.srt 9KB 1. Introduction/6. Installation of Required Libraries.srt 9KB 7. Unsupervised Learning - Clustering Techniques/1. Introduction.srt 8KB 2. Machine Learning Useful Packages (Libraries)/2. NumPy1.srt 8KB 3. Data Preprocessing/10. Concatenation.srt 8KB 3. Data Preprocessing/11. Dummy Variable.srt 8KB 2. Machine Learning Useful Packages (Libraries)/5. NumPy4.srt 8KB 5. Supervised Learning - Classification/5. Decision Tree Concepts.srt 8KB 6. Supervised Learning - Regression/9. Support Vector Regression Concepts.srt 8KB 2. Machine Learning Useful Packages (Libraries)/1.1 Python Source Codes.zip 7KB 6. Supervised Learning - Regression/7. Random Forest Concepts.srt 7KB 7. Unsupervised Learning - Clustering Techniques/3. K-means Concepts2.srt 7KB 1. Introduction/2. What is Machine Learning Some Basic Terms.srt 7KB 5. Supervised Learning - Classification/6. Decision Tree Model Development.srt 7KB 5. Supervised Learning - Classification/9. Naive Bayes Model Development.srt 7KB 6. Supervised Learning - Regression/5. Polynomial Linear Regression Concepts.srt 7KB 7. Unsupervised Learning - Clustering Techniques/9. Hierarchical Clustering Concepts.srt 7KB 1. Introduction/1. Course Content.srt 6KB 7. Unsupervised Learning - Clustering Techniques/7. DBSCAN Concepts.srt 6KB 7. Unsupervised Learning - Clustering Techniques/4. K-means Model Development1.srt 5KB 8. Hyper Parameter Optimization (Model Tuning)/1. Introduction.srt 5KB 3. Data Preprocessing/9. Outlier Detection3.srt 4KB 5. Supervised Learning - Classification/10. Logistic Regression Concepts.srt 3KB 1. Introduction/5. IDE Installation.srt 3KB 1. Introduction/4. Python IDE.srt 3KB 8. Hyper Parameter Optimization (Model Tuning)/3. K-Means - Model Tuning.srt 3KB 1. Introduction/3. Python Installation.html 612B 2. Machine Learning Useful Packages (Libraries)/11.1 Data_Set.csv 580B 3. Data Preprocessing/1.1 Data_Set.csv 580B 2. Machine Learning Useful Packages (Libraries)/1. Python Source Codes.html 368B 3. Data Preprocessing/10.1 Data_New.csv 201B 2. Machine Learning Useful Packages (Libraries)/17. Chapter 2 Quiz.html 160B 3. Data Preprocessing/13. Chapter3 Quiz.html 160B 4. Machine Learning Introduction/2. Chapter 4 Quiz.html 160B 5. Supervised Learning - Classification/14. Chapter 5 Quiz.html 160B 6. Supervised Learning - Regression/11. Chapter 6 Quiz.html 160B 7. Unsupervised Learning - Clustering Techniques/11. Chapter 7 Quiz.html 160B 3. Data Preprocessing/GetFreeCourses.Co.url 116B 5. Supervised Learning - Classification/GetFreeCourses.Co.url 116B Download Paid Udemy Courses For Free.url 116B GetFreeCourses.Co.url 116B