Learn To Create Artificially Intelligent Games Using Python3 收录时间:2024-01-27 13:59:13 文件大小:13GB 下载次数:1 最近下载:2024-01-27 13:59:13 磁力链接: magnet:?xt=urn:btih:02ee36fb1a2ba0f6967861ecfefda14652591bd4 立即下载 复制链接 文件列表 11 - Introduction to gym module/008 Tennis Game with Random Policy.mp4 204MB 21 - Deep Convolution Q-Learning Practical Pacman game/006 Build Convolution Neural Network.mp4 194MB 18 - TicTacToe Tensorflow/003 Preprocess the state.mp4 178MB 11 - Introduction to gym module/006 Transitional Probability.mp4 172MB 18 - TicTacToe Tensorflow/009 Creating Neural Network Player.mp4 172MB 03 - Python Essentials/013 Logical statements.mp4 170MB 03 - Python Essentials/033 Multiple Inheritance.mp4 159MB 11 - Introduction to gym module/007 CartPole Example.mp4 149MB 18 - TicTacToe Tensorflow/002 Creating model for the Game.mp4 142MB 14 - Creating BlackJack Game/002 Introduction to Project Files.mp4 141MB 03 - Python Essentials/032 What is Inheritance.mp4 141MB 18 - TicTacToe Tensorflow/008 TicTacToe Neural Network.mp4 140MB 03 - Python Essentials/003 Basic Arithmetic in Python.mp4 140MB 09 - Bellman Equation and Dynamic Programming/012 Temporal Difference.mp4 134MB 04 - Pygame Refresher/002 Pygame coordinate System.mp4 132MB 13 - Implementing Monte Carlo Predictions/005 Implementing MC simulation.mp4 130MB 17 - Tensorflow and Keras/006 Keras models (Important).mp4 123MB 03 - Python Essentials/031 Constructor in Python.mp4 122MB 16 - Scratch Implementation of Neural Network/004 Coding dense layer [must know Object Oriented Programming].mp4 121MB 13 - Implementing Monte Carlo Predictions/001 BlackJack Game and Rules of the Game.mp4 120MB 15 - Neural Network Refresher/002 Introduction to Neural Networks.mp4 116MB 21 - Deep Convolution Q-Learning Practical Pacman game/013 Training model for multiple iterations.mp4 115MB 06 - Creating TicTacToe using MinMax algorithm/006 Implementing MinMax algorithm.mp4 113MB 21 - Deep Convolution Q-Learning Practical Pacman game/002 Mean Squared Error.mp4 113MB 03 - Python Essentials/006 Access elements of String.mp4 113MB 13 - Implementing Monte Carlo Predictions/006 Calculate Value of State using MC simulation.mp4 112MB 14 - Creating BlackJack Game/010 Training the Q-Learning model and Running Game.mp4 108MB 10 - Implementation of Q-Learning to Find Optimal Path/002 Introduction to Project Files.mp4 107MB 15 - Neural Network Refresher/008 Introduction to the Activation Function.mp4 106MB 14 - Creating BlackJack Game/007 Implementing Temporal Difference (update Q-values).mp4 105MB 16 - Scratch Implementation of Neural Network/005 Introduction to Activation Function.mp4 105MB 19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/002 Action Selection Policy.mp4 104MB 21 - Deep Convolution Q-Learning Practical Pacman game/001 Introduction to Replay Buffer.mp4 103MB 03 - Python Essentials/030 Class and Objects Continued.mp4 103MB 21 - Deep Convolution Q-Learning Practical Pacman game/005 Solving ROM error.mp4 102MB 21 - Deep Convolution Q-Learning Practical Pacman game/009 Epsilon Greedy (Action-Selection Policy).mp4 101MB 17 - Tensorflow and Keras/004 Examples.mp4 98MB 20 - Convolution Neural Network/003 Convolution Layer.mp4 96MB 03 - Python Essentials/023 Important List Comprehension for Game Development.mp4 96MB 06 - Creating TicTacToe using MinMax algorithm/008 Playing against AI player and Tuning algorithm.mp4 96MB 21 - Deep Convolution Q-Learning Practical Pacman game/014 Simulating the game and storing transitions.mp4 96MB 10 - Implementation of Q-Learning to Find Optimal Path/011 Executing Gameq-Learning Algorithm.mp4 95MB 16 - Scratch Implementation of Neural Network/002 Coding neuron layer.mp4 95MB 03 - Python Essentials/022 For loop.mp4 93MB 04 - Pygame Refresher/003 Introduction to Pygame shape.mp4 93MB 15 - Neural Network Refresher/006 Updating the weights [partial differentiation].mp4 92MB 19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/003 Exploration vs Exploitation.mp4 92MB 21 - Deep Convolution Q-Learning Practical Pacman game/010 Training the neural network.mp4 90MB 03 - Python Essentials/015 if else statements.mp4 89MB 04 - Pygame Refresher/006 Fundamentals of Pygame -- skeleton code.mp4 89MB 13 - Implementing Monte Carlo Predictions/003 Defining Policy.mp4 86MB 21 - Deep Convolution Q-Learning Practical Pacman game/008 Build Main Network and Target Network.mp4 84MB 02 - Setup Anaconda and Install Dependencies for Project/003 Install DependenciesLibraries for the Course.mp4 83MB 04 - Pygame Refresher/004 Draw shapes using Pygame.mp4 83MB 09 - Bellman Equation and Dynamic Programming/008 Markov Decision Process + Bellman.mp4 81MB 03 - Python Essentials/025 Learn to create Functions.mp4 79MB 04 - Pygame Refresher/010 Make movement within Boundary.mp4 79MB 14 - Creating BlackJack Game/009 Making AI to play game.mp4 78MB 15 - Neural Network Refresher/012 Introduction to Stochastic Gradient Descent and Adam Optimizer.mp4 78MB 21 - Deep Convolution Q-Learning Practical Pacman game/004 Creating Environment.mp4 78MB 11 - Introduction to gym module/009 CartPole with Random Policy.mp4 77MB 15 - Neural Network Refresher/003 Inspiration and representation for Neural Network.mp4 77MB 03 - Python Essentials/004 Operations on Numbers.mp4 77MB 19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/001 Introduction to Deep Q-Learning.mp4 76MB 13 - Implementing Monte Carlo Predictions/004 Generating Episodes.mp4 76MB 10 - Implementation of Q-Learning to Find Optimal Path/010 Implementing Temporal Difference.mp4 75MB 10 - Implementation of Q-Learning to Find Optimal Path/001 Introduction to Project.mp4 75MB 09 - Bellman Equation and Dynamic Programming/010 Equation of Q-Learning.mp4 74MB 12 - Monte Carlo Simulation/003 Monte Carlo Method (MC - method).mp4 73MB 08 - Key Terms of Artificial Intelligence (Important)/003 Markov Decision Process.mp4 73MB 10 - Implementation of Q-Learning to Find Optimal Path/005 Example of Q-Table.mp4 73MB 14 - Creating BlackJack Game/008 AI Player steps.mp4 73MB 03 - Python Essentials/020 Infinite while loop (Game Loop).mp4 73MB 06 - Creating TicTacToe using MinMax algorithm/005 Calculating ValueHeuristic for Min Max player.mp4 72MB 03 - Python Essentials/018 How to access the items from the list.mp4 71MB 04 - Pygame Refresher/005 Color Picker.mp4 70MB 15 - Neural Network Refresher/004 History and Application of Neural Network.mp4 70MB 16 - Scratch Implementation of Neural Network/006 Implementation of activation function [step and sigmoid].mp4 69MB 16 - Scratch Implementation of Neural Network/001 Setting up environment and coding single neuron.mp4 69MB 11 - Introduction to gym module/003 Creating Gym Environment.mp4 69MB 15 - Neural Network Refresher/001 Introduction to Artificial Intelligence.mp4 68MB 05 - Introduction to MinMax Algorithm/006 Example of Heuristic.mp4 68MB 10 - Implementation of Q-Learning to Find Optimal Path/004 Briefing about Q-Table.mp4 67MB 06 - Creating TicTacToe using MinMax algorithm/002 Introduction to Project Files.mp4 67MB 10 - Implementation of Q-Learning to Find Optimal Path/009 Action Selection Policy (Returning max Q value).mp4 67MB 21 - Deep Convolution Q-Learning Practical Pacman game/012 Preprocess the state.mp4 65MB 05 - Introduction to MinMax Algorithm/008 Example of MinMax.mp4 65MB 12 - Monte Carlo Simulation/001 Why Monte Carlo Simulation is important.mp4 65MB 02 - Setup Anaconda and Install Dependencies for Project/001 Install Anaconda.mp4 65MB 03 - Python Essentials/029 Class and Objects.mp4 64MB 15 - Neural Network Refresher/010 Why we use regularization in the Neural Network.mp4 63MB 16 - Scratch Implementation of Neural Network/007 Implementation of activation function [tanh and ReLu].mp4 62MB 03 - Python Essentials/017 Checking type of Data Structures.mp4 62MB 03 - Python Essentials/007 Formatting strings.mp4 61MB 17 - Tensorflow and Keras/001 What is Tensorflow.mp4 61MB 15 - Neural Network Refresher/011 Introduction to the gradient descent [review].mp4 60MB 05 - Introduction to MinMax Algorithm/007 Introduction to MinMax algorithm.mp4 60MB 14 - Creating BlackJack Game/005 (State, Action, Reward) of Episodes.mp4 60MB 03 - Python Essentials/009 Create Variables in Python.mp4 60MB 06 - Creating TicTacToe using MinMax algorithm/003 Creating Indecisive Player (Random).mp4 59MB 03 - Python Essentials/026 Learn about return statements.mp4 58MB 18 - TicTacToe Tensorflow/005 Training the model.mp4 58MB 10 - Implementation of Q-Learning to Find Optimal Path/006 Q-Agent.mp4 57MB 09 - Bellman Equation and Dynamic Programming/005 Example.mp4 57MB 09 - Bellman Equation and Dynamic Programming/006 Plan.mp4 57MB 05 - Introduction to MinMax Algorithm/001 Introduction to Board Games.mp4 57MB 15 - Neural Network Refresher/007 Introduction to partial differentiation.mp4 56MB 17 - Tensorflow and Keras/002 Rank of Tensors.mp4 56MB 07 - Introduction to Artificial Intelligence/009 Value of the State.mp4 56MB 05 - Introduction to MinMax Algorithm/004 Solution of Lookahead problem.mp4 53MB 09 - Bellman Equation and Dynamic Programming/004 Bellman Equation.mp4 53MB 06 - Creating TicTacToe using MinMax algorithm/007 Setting up Autoplayer (Artificial Intelligent Player).mp4 53MB 10 - Implementation of Q-Learning to Find Optimal Path/003 Creating Environment.mp4 53MB 20 - Convolution Neural Network/006 BackPropagation.mp4 53MB 04 - Pygame Refresher/001 Introduction to the pygame.mp4 51MB 04 - Pygame Refresher/008 Movement of the shapes.mp4 50MB 04 - Pygame Refresher/007 Render a rectangle in the Screen.mp4 50MB 15 - Neural Network Refresher/005 Example of neural network.mp4 49MB 09 - Bellman Equation and Dynamic Programming/007 Non Deterministic Environment.mp4 49MB 16 - Scratch Implementation of Neural Network/003 Using dot product to code neuron layer.mp4 49MB 07 - Introduction to Artificial Intelligence/002 Reinforcement Learning.mp4 49MB 11 - Introduction to gym module/005 State space and Action space.mp4 49MB 03 - Python Essentials/011 Learn to create conditions.mp4 48MB 06 - Creating TicTacToe using MinMax algorithm/004 Implementing MinMax.mp4 48MB 21 - Deep Convolution Q-Learning Practical Pacman game/003 Main Network and Target Network.mp4 48MB 13 - Implementing Monte Carlo Predictions/002 Creating BlackJack Environment.mp4 47MB 11 - Introduction to gym module/002 Example of Gym Environment.mp4 47MB 17 - Tensorflow and Keras/007 Implementing Neural Network using Keras.mp4 47MB 21 - Deep Convolution Q-Learning Practical Pacman game/015 Testing the game.mp4 46MB 05 - Introduction to MinMax Algorithm/002 Tree representation of Game.mp4 46MB 09 - Bellman Equation and Dynamic Programming/009 Introduction to Q-Learning.mp4 45MB 18 - TicTacToe Tensorflow/004 Define Independent (input) and Dependent (output) Variable.mp4 45MB 11 - Introduction to gym module/004 Getting started with Gym.mp4 45MB 14 - Creating BlackJack Game/001 Action Selection Policy (Epsilon-Greedy).mp4 45MB 15 - Neural Network Refresher/009 Why do we need bias in the program.mp4 45MB 06 - Creating TicTacToe using MinMax algorithm/001 introduction to Game.mp4 44MB 17 - Tensorflow and Keras/003 Program Elements of Tensorflow.mp4 44MB 14 - Creating BlackJack Game/004 Implementing Epsilon Greedy Policy.mp4 43MB 18 - TicTacToe Tensorflow/001 Introduction to Project Files.mp4 43MB 03 - Python Essentials/027 Introduction to the section.mp4 41MB 17 - Tensorflow and Keras/005 Introduction to Keras.mp4 41MB 02 - Setup Anaconda and Install Dependencies for Project/004 Download Visual Studio Code.mp4 41MB 05 - Introduction to MinMax Algorithm/009 MinMax Example for TicTacToe.mp4 41MB 14 - Creating BlackJack Game/006 Introduction to Discount Parameter.mp4 40MB 19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/004 Deep Convolution Q-Learning.mp4 40MB 12 - Monte Carlo Simulation/004 First Visit vs Every Visit MC.mp4 40MB 02 - Setup Anaconda and Install Dependencies for Project/002 Create Virtual Environment.mp4 40MB 08 - Key Terms of Artificial Intelligence (Important)/001 Markov Property and Markov Chain.mp4 39MB 21 - Deep Convolution Q-Learning Practical Pacman game/011 Fit the model.mp4 39MB 04 - Pygame Refresher/009 Smoothen the movement using FPS.mp4 38MB 03 - Python Essentials/028 What is Object Oriented Programming.mp4 38MB 10 - Implementation of Q-Learning to Find Optimal Path/007 Possible Actions.mp4 38MB 05 - Introduction to MinMax Algorithm/005 Heuristic Evaluation of Board.mp4 37MB 03 - Python Essentials/021 Finite Game Loop.mp4 36MB 21 - Deep Convolution Q-Learning Practical Pacman game/007 Store Transition in Replay buffer.mp4 36MB 03 - Python Essentials/016 Introduction to Data Structures.mp4 35MB 01 - Introduction/001 Introduction.mp4 34MB 10 - Implementation of Q-Learning to Find Optimal Path/008 Iterations.mp4 32MB 09 - Bellman Equation and Dynamic Programming/003 Value Function.mp4 32MB 20 - Convolution Neural Network/001 Introduction to convolution neural network.mp4 31MB 18 - TicTacToe Tensorflow/007 TicTacToe Model.mp4 30MB 05 - Introduction to MinMax Algorithm/003 Lookahead Problem.mp4 30MB 14 - Creating BlackJack Game/003 Q-Table.mp4 30MB 20 - Convolution Neural Network/002 How ConvNet works.mp4 29MB 08 - Key Terms of Artificial Intelligence (Important)/002 Markov Reward Process.mp4 29MB 12 - Monte Carlo Simulation/002 Monte Carlo Simulation.mp4 27MB 03 - Python Essentials/005 Introduction to Strings in Python.mp4 26MB 03 - Python Essentials/002 Introduction to the data types.mp4 25MB 11 - Introduction to gym module/001 The gym module.mp4 24MB 03 - Python Essentials/001 What is Python.mp4 23MB 12 - Monte Carlo Simulation/005 BlackJack Example.mp4 22MB 07 - Introduction to Artificial Intelligence/001 Motivation for Artificial Intelligence.mp4 22MB 03 - Python Essentials/010 Introduction to Booleans in Python.mp4 20MB 20 - Convolution Neural Network/004 RELU Layer.mp4 19MB 07 - Introduction to Artificial Intelligence/007 Policy.mp4 19MB 07 - Introduction to Artificial Intelligence/010 Model.mp4 18MB 07 - Introduction to Artificial Intelligence/006 Typical RL scenario.mp4 18MB 03 - Python Essentials/014 Introduction to conditional statements.mp4 17MB 09 - Bellman Equation and Dynamic Programming/001 Introduction.mp4 17MB 20 - Convolution Neural Network/005 Pooling Layer.mp4 16MB 15 - Neural Network Refresher/013 Introduction to mini-batch SGD.mp4 16MB 09 - Bellman Equation and Dynamic Programming/002 Tribute to Bellman.mp4 15MB 03 - Python Essentials/008 Introduction to the variables.mp4 14MB 03 - Python Essentials/012 is operator in Python.mp4 14MB 07 - Introduction to Artificial Intelligence/004 Rewards.mp4 13MB 03 - Python Essentials/024 What is Function and Why we need it.mp4 12MB 03 - Python Essentials/019 Introduction to the loops in Python.mp4 12MB 09 - Bellman Equation and Dynamic Programming/011 Q value for Non-Deterministic Environment.mp4 12MB 18 - TicTacToe Tensorflow/006 Predict from the model.mp4 11MB 07 - Introduction to Artificial Intelligence/003 Environment.mp4 11MB 05 - Introduction to MinMax Algorithm/010 MinMax Algorithm.mp4 9MB 07 - Introduction to Artificial Intelligence/005 Path.mp4 5MB 07 - Introduction to Artificial Intelligence/008 Rewards.mp4 5MB 09 - Bellman Equation and Dynamic Programming/012 Temporal Difference_en.vtt 35KB 11 - Introduction to gym module/006 Transitional Probability_en.vtt 33KB 18 - TicTacToe Tensorflow/003 Preprocess the state_en.vtt 32KB 21 - Deep Convolution Q-Learning Practical Pacman game/006 Build Convolution Neural Network_en.vtt 32KB 11 - Introduction to gym module/008 Tennis Game with Random Policy_en.vtt 30KB 15 - Neural Network Refresher/002 Introduction to Neural Networks_en.vtt 29KB 15 - Neural Network Refresher/008 Introduction to the Activation Function_en.vtt 29KB 21 - Deep Convolution Q-Learning Practical Pacman game/002 Mean Squared Error_en.vtt 27KB 18 - TicTacToe Tensorflow/002 Creating model for the Game_en.vtt 26KB 03 - Python Essentials/003 Basic Arithmetic in Python_en.vtt 24KB 16 - Scratch Implementation of Neural Network/004 Coding dense layer [must know Object Oriented Programming]_en.vtt 24KB 03 - Python Essentials/013 Logical statements_en.vtt 23KB 15 - Neural Network Refresher/006 Updating the weights [partial differentiation]_en.vtt 22KB 13 - Implementing Monte Carlo Predictions/005 Implementing MC simulation_en.vtt 22KB 21 - Deep Convolution Q-Learning Practical Pacman game/001 Introduction to Replay Buffer_en.vtt 21KB 15 - Neural Network Refresher/012 Introduction to Stochastic Gradient Descent and Adam Optimizer_en.vtt 21KB 16 - Scratch Implementation of Neural Network/002 Coding neuron layer_en.vtt 21KB 18 - TicTacToe Tensorflow/009 Creating Neural Network Player_en.vtt 21KB 18 - TicTacToe Tensorflow/008 TicTacToe Neural Network_en.vtt 21KB 04 - Pygame Refresher/002 Pygame coordinate System_en.vtt 20KB 14 - Creating BlackJack Game/002 Introduction to Project Files_en.vtt 20KB 06 - Creating TicTacToe using MinMax algorithm/006 Implementing MinMax algorithm_en.vtt 19KB 09 - Bellman Equation and Dynamic Programming/008 Markov Decision Process + Bellman_en.vtt 19KB 11 - Introduction to gym module/007 CartPole Example_en.vtt 19KB 15 - Neural Network Refresher/007 Introduction to partial differentiation_en.vtt 19KB 15 - Neural Network Refresher/011 Introduction to the gradient descent [review]_en.vtt 19KB 16 - Scratch Implementation of Neural Network/001 Setting up environment and coding single neuron_en.vtt 19KB 03 - Python Essentials/023 Important List Comprehension for Game Development_en.vtt 19KB 16 - Scratch Implementation of Neural Network/005 Introduction to Activation Function_en.vtt 19KB 03 - Python Essentials/033 Multiple Inheritance_en.vtt 18KB 13 - Implementing Monte Carlo Predictions/001 BlackJack Game and Rules of the Game_en.vtt 18KB 15 - Neural Network Refresher/004 History and Application of Neural Network_en.vtt 17KB 05 - Introduction to MinMax Algorithm/007 Introduction to MinMax algorithm_en.vtt 17KB 21 - Deep Convolution Q-Learning Practical Pacman game/013 Training model for multiple iterations_en.vtt 17KB 03 - Python Essentials/022 For loop_en.vtt 17KB 15 - Neural Network Refresher/003 Inspiration and representation for Neural Network_en.vtt 17KB 21 - Deep Convolution Q-Learning Practical Pacman game/010 Training the neural network_en.vtt 17KB 20 - Convolution Neural Network/003 Convolution Layer_en.vtt 17KB 09 - Bellman Equation and Dynamic Programming/010 Equation of Q-Learning_en.vtt 16KB 16 - Scratch Implementation of Neural Network/007 Implementation of activation function [tanh and ReLu]_en.vtt 16KB 15 - Neural Network Refresher/005 Example of neural network_en.vtt 16KB 19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/001 Introduction to Deep Q-Learning_en.vtt 16KB 10 - Implementation of Q-Learning to Find Optimal Path/002 Introduction to Project Files_en.vtt 16KB 14 - Creating BlackJack Game/007 Implementing Temporal Difference (update Q-values)_en.vtt 15KB 14 - Creating BlackJack Game/010 Training the Q-Learning model and Running Game_en.vtt 15KB 13 - Implementing Monte Carlo Predictions/006 Calculate Value of State using MC simulation_en.vtt 15KB 09 - Bellman Equation and Dynamic Programming/004 Bellman Equation_en.vtt 15KB 21 - Deep Convolution Q-Learning Practical Pacman game/009 Epsilon Greedy (Action-Selection Policy)_en.vtt 15KB 16 - Scratch Implementation of Neural Network/006 Implementation of activation function [step and sigmoid]_en.vtt 15KB 05 - Introduction to MinMax Algorithm/006 Example of Heuristic_en.vtt 15KB 03 - Python Essentials/020 Infinite while loop (Game Loop)_en.vtt 14KB 05 - Introduction to MinMax Algorithm/008 Example of MinMax_en.vtt 14KB 21 - Deep Convolution Q-Learning Practical Pacman game/014 Simulating the game and storing transitions_en.vtt 14KB 03 - Python Essentials/004 Operations on Numbers_en.vtt 14KB 03 - Python Essentials/032 What is Inheritance_en.vtt 14KB 05 - Introduction to MinMax Algorithm/001 Introduction to Board Games_en.vtt 14KB 09 - Bellman Equation and Dynamic Programming/005 Example_en.vtt 14KB 10 - Implementation of Q-Learning to Find Optimal Path/011 Executing Gameq-Learning Algorithm_en.vtt 14KB 03 - Python Essentials/031 Constructor in Python_en.vtt 14KB 04 - Pygame Refresher/010 Make movement within Boundary_en.vtt 14KB 03 - Python Essentials/030 Class and Objects Continued_en.vtt 14KB 10 - Implementation of Q-Learning to Find Optimal Path/005 Example of Q-Table_en.vtt 13KB 21 - Deep Convolution Q-Learning Practical Pacman game/008 Build Main Network and Target Network_en.vtt 13KB 03 - Python Essentials/007 Formatting strings_en.vtt 13KB 13 - Implementing Monte Carlo Predictions/003 Defining Policy_en.vtt 13KB 21 - Deep Convolution Q-Learning Practical Pacman game/005 Solving ROM error_en.vtt 13KB 10 - Implementation of Q-Learning to Find Optimal Path/009 Action Selection Policy (Returning max Q value)_en.vtt 13KB 17 - Tensorflow and Keras/006 Keras models (Important)_en.vtt 13KB 12 - Monte Carlo Simulation/003 Monte Carlo Method (MC - method)_en.vtt 12KB 04 - Pygame Refresher/006 Fundamentals of Pygame -- skeleton code_en.vtt 12KB 06 - Creating TicTacToe using MinMax algorithm/008 Playing against AI player and Tuning algorithm_en.vtt 12KB 16 - Scratch Implementation of Neural Network/003 Using dot product to code neuron layer_en.vtt 12KB 11 - Introduction to gym module/003 Creating Gym Environment_en.vtt 12KB 19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/002 Action Selection Policy_en.vtt 12KB 06 - Creating TicTacToe using MinMax algorithm/003 Creating Indecisive Player (Random)_en.vtt 12KB 03 - Python Essentials/025 Learn to create Functions_en.vtt 12KB 17 - Tensorflow and Keras/004 Examples_en.vtt 12KB 15 - Neural Network Refresher/001 Introduction to Artificial Intelligence_en.vtt 12KB 03 - Python Essentials/006 Access elements of String_en.vtt 12KB 13 - Implementing Monte Carlo Predictions/004 Generating Episodes_en.vtt 12KB 10 - Implementation of Q-Learning to Find Optimal Path/006 Q-Agent_en.vtt 12KB 12 - Monte Carlo Simulation/001 Why Monte Carlo Simulation is important_en.vtt 12KB 09 - Bellman Equation and Dynamic Programming/007 Non Deterministic Environment_en.vtt 12KB 05 - Introduction to MinMax Algorithm/004 Solution of Lookahead problem_en.vtt 12KB 15 - Neural Network Refresher/009 Why do we need bias in the program_en.vtt 11KB 21 - Deep Convolution Q-Learning Practical Pacman game/003 Main Network and Target Network_en.vtt 11KB 10 - Implementation of Q-Learning to Find Optimal Path/001 Introduction to Project_en.vtt 11KB 06 - Creating TicTacToe using MinMax algorithm/005 Calculating ValueHeuristic for Min Max player_en.vtt 11KB 11 - Introduction to gym module/009 CartPole with Random Policy_en.vtt 11KB 03 - Python Essentials/018 How to access the items from the list_en.vtt 11KB 03 - Python Essentials/009 Create Variables in Python_en.vtt 11KB 19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/003 Exploration vs Exploitation_en.vtt 11KB 03 - Python Essentials/015 if else statements_en.vtt 11KB 17 - Tensorflow and Keras/002 Rank of Tensors_en.vtt 11KB 06 - Creating TicTacToe using MinMax algorithm/002 Introduction to Project Files_en.vtt 11KB 09 - Bellman Equation and Dynamic Programming/009 Introduction to Q-Learning_en.vtt 11KB 08 - Key Terms of Artificial Intelligence (Important)/003 Markov Decision Process_en.vtt 10KB 21 - Deep Convolution Q-Learning Practical Pacman game/004 Creating Environment_en.vtt 10KB 04 - Pygame Refresher/004 Draw shapes using Pygame_en.vtt 10KB 05 - Introduction to MinMax Algorithm/002 Tree representation of Game_en.vtt 10KB 14 - Creating BlackJack Game/008 AI Player steps_en.vtt 10KB 10 - Implementation of Q-Learning to Find Optimal Path/010 Implementing Temporal Difference_en.vtt 10KB 03 - Python Essentials/017 Checking type of Data Structures_en.vtt 10KB 14 - Creating BlackJack Game/005 (State, Action, Reward) of Episodes_en.vtt 10KB 14 - Creating BlackJack Game/009 Making AI to play game_en.vtt 10KB 21 - Deep Convolution Q-Learning Practical Pacman game/012 Preprocess the state_en.vtt 10KB 17 - Tensorflow and Keras/001 What is Tensorflow_en.vtt 10KB 14 - Creating BlackJack Game/004 Implementing Epsilon Greedy Policy_en.vtt 10KB 18 - TicTacToe Tensorflow/005 Training the model_en.vtt 10KB 05 - Introduction to MinMax Algorithm/009 MinMax Example for TicTacToe_en.vtt 9KB 09 - Bellman Equation and Dynamic Programming/006 Plan_en.vtt 9KB 03 - Python Essentials/029 Class and Objects_en.vtt 9KB 19 - Introduction to Deep Q-Learning and Deep Convolution Q-Learning/004 Deep Convolution Q-Learning_en.vtt 9KB 10 - Implementation of Q-Learning to Find Optimal Path/003 Creating Environment_en.vtt 9KB 03 - Python Essentials/026 Learn about return statements_en.vtt 9KB 05 - Introduction to MinMax Algorithm/005 Heuristic Evaluation of Board_en.vtt 9KB 17 - Tensorflow and Keras/003 Program Elements of Tensorflow_en.vtt 9KB 02 - Setup Anaconda and Install Dependencies for Project/004 Download Visual Studio Code_en.vtt 9KB 11 - Introduction to gym module/005 State space and Action space_en.vtt 9KB 06 - Creating TicTacToe using MinMax algorithm/004 Implementing MinMax_en.vtt 8KB 02 - Setup Anaconda and Install Dependencies for Project/003 Install DependenciesLibraries for the Course_en.vtt 8KB 08 - Key Terms of Artificial Intelligence (Important)/001 Markov Property and Markov Chain_en.vtt 8KB 14 - Creating BlackJack Game/001 Action Selection Policy (Epsilon-Greedy)_en.vtt 8KB 11 - Introduction to gym module/004 Getting started with Gym_en.vtt 8KB 07 - Introduction to Artificial Intelligence/009 Value of the State_en.vtt 8KB 05 - Introduction to MinMax Algorithm/003 Lookahead Problem_en.vtt 8KB 11 - Introduction to gym module/002 Example of Gym Environment_en.vtt 8KB 13 - Implementing Monte Carlo Predictions/002 Creating BlackJack Environment_en.vtt 8KB 04 - Pygame Refresher/008 Movement of the shapes_en.vtt 8KB 20 - Convolution Neural Network/006 BackPropagation_en.vtt 8KB 10 - Implementation of Q-Learning to Find Optimal Path/004 Briefing about Q-Table_en.vtt 8KB 06 - Creating TicTacToe using MinMax algorithm/001 introduction to Game_en.vtt 8KB 10 - Implementation of Q-Learning to Find Optimal Path/007 Possible Actions_en.vtt 8KB 09 - Bellman Equation and Dynamic Programming/003 Value Function_en.vtt 8KB 04 - Pygame Refresher/007 Render a rectangle in the Screen_en.vtt 7KB 12 - Monte Carlo Simulation/004 First Visit vs Every Visit MC_en.vtt 7KB 06 - Creating TicTacToe using MinMax algorithm/007 Setting up Autoplayer (Artificial Intelligent Player)_en.vtt 7KB 04 - Pygame Refresher/003 Introduction to Pygame shape_en.vtt 7KB 04 - Pygame Refresher/005 Color Picker_en.vtt 7KB 14 - Creating BlackJack Game/006 Introduction to Discount Parameter_en.vtt 7KB 03 - Python Essentials/011 Learn to create conditions_en.vtt 7KB 02 - Setup Anaconda and Install Dependencies for Project/001 Install Anaconda_en.vtt 7KB 18 - TicTacToe Tensorflow/001 Introduction to Project Files_en.vtt 7KB 04 - Pygame Refresher/009 Smoothen the movement using FPS_en.vtt 6KB 03 - Python Essentials/021 Finite Game Loop_en.vtt 6KB 04 - Pygame Refresher/001 Introduction to the pygame_en.vtt 6KB 18 - TicTacToe Tensorflow/004 Define Independent (input) and Dependent (output) Variable_en.vtt 6KB 21 - Deep Convolution Q-Learning Practical Pacman game/011 Fit the model_en.vtt 6KB 12 - Monte Carlo Simulation/002 Monte Carlo Simulation_en.vtt 6KB 02 - Setup Anaconda and Install Dependencies for Project/002 Create Virtual Environment_en.vtt 6KB 17 - Tensorflow and Keras/007 Implementing Neural Network using Keras_en.vtt 5KB 18 - TicTacToe Tensorflow/007 TicTacToe Model_en.vtt 5KB 10 - Implementation of Q-Learning to Find Optimal Path/008 Iterations_en.vtt 5KB 21 - Deep Convolution Q-Learning Practical Pacman game/007 Store Transition in Replay buffer_en.vtt 5KB 17 - Tensorflow and Keras/005 Introduction to Keras_en.vtt 5KB 20 - Convolution Neural Network/001 Introduction to convolution neural network_en.vtt 5KB 20 - Convolution Neural Network/002 How ConvNet works_en.vtt 5KB 07 - Introduction to Artificial Intelligence/010 Model_en.vtt 5KB 03 - Python Essentials/005 Introduction to Strings in Python_en.vtt 5KB 21 - Deep Convolution Q-Learning Practical Pacman game/015 Testing the game_en.vtt 5KB 03 - Python Essentials/028 What is Object Oriented Programming_en.vtt 5KB 09 - Bellman Equation and Dynamic Programming/001 Introduction_en.vtt 5KB 09 - Bellman Equation and Dynamic Programming/002 Tribute to Bellman_en.vtt 4KB 07 - Introduction to Artificial Intelligence/006 Typical RL scenario_en.vtt 4KB 12 - Monte Carlo Simulation/005 BlackJack Example_en.vtt 4KB 14 - Creating BlackJack Game/003 Q-Table_en.vtt 4KB 15 - Neural Network Refresher/010 Why we use regularization in the Neural Network_en.vtt 4KB 08 - Key Terms of Artificial Intelligence (Important)/002 Markov Reward Process_en.vtt 4KB 20 - Convolution Neural Network/004 RELU Layer_en.vtt 4KB 07 - Introduction to Artificial Intelligence/007 Policy_en.vtt 3KB 15 - Neural Network Refresher/013 Introduction to mini-batch SGD_en.vtt 3KB 20 - Convolution Neural Network/005 Pooling Layer_en.vtt 3KB 11 - Introduction to gym module/001 The gym module_en.vtt 3KB 03 - Python Essentials/027 Introduction to the section_en.vtt 3KB 07 - Introduction to Artificial Intelligence/001 Motivation for Artificial Intelligence_en.vtt 3KB 09 - Bellman Equation and Dynamic Programming/011 Q value for Non-Deterministic Environment_en.vtt 3KB 03 - Python Essentials/012 is operator in Python_en.vtt 3KB 03 - Python Essentials/016 Introduction to Data Structures_en.vtt 3KB 07 - Introduction to Artificial Intelligence/004 Rewards_en.vtt 3KB 07 - Introduction to Artificial Intelligence/002 Reinforcement Learning_en.vtt 3KB 07 - Introduction to Artificial Intelligence/003 Environment_en.vtt 3KB 05 - Introduction to MinMax Algorithm/010 MinMax Algorithm_en.vtt 2KB 03 - Python Essentials/001 What is Python_en.vtt 2KB 01 - Introduction/001 Introduction_en.vtt 2KB 18 - TicTacToe Tensorflow/006 Predict from the model_en.vtt 2KB 03 - Python Essentials/002 Introduction to the data types_en.vtt 1KB 03 - Python Essentials/010 Introduction to Booleans in Python_en.vtt 1KB 07 - Introduction to Artificial Intelligence/005 Path_en.vtt 1KB 03 - Python Essentials/008 Introduction to the variables_en.vtt 992B 03 - Python Essentials/014 Introduction to conditional statements_en.vtt 935B 07 - Introduction to Artificial Intelligence/008 Rewards_en.vtt 912B 03 - Python Essentials/024 What is Function and Why we need it_en.vtt 870B 03 - Python Essentials/019 Introduction to the loops in Python_en.vtt 679B 22 - Any games you want to suggest/001 Farewell.html 339B