Udemy - Algorithms and Data Structures in Python
- 收录时间:2018-02-25 16:49:48
- 文件大小:2GB
- 下载次数:345
- 最近下载:2021-01-04 01:59:57
- 磁力链接:
-
文件列表
- 03 Data Structures/008 AVL tree implementation II.mp4 76MB
- 04 Graph Algorithms/009 Bellman-Ford implementation.mp4 75MB
- 03 Data Structures/012 Hashtable introduction.mp4 70MB
- 04 Graph Algorithms/011 Kruskal algorithm I - The union find data structure.mp4 68MB
- 04 Graph Algorithms/007 Dijkstra algorithm.mp4 65MB
- 05 Other Problems/002 Splay trees.mp4 65MB
- 03 Data Structures/006 AVL trees introduction.mp4 61MB
- 03 Data Structures/002 Linked list implementation.mp4 61MB
- 05 Other Problems/001 Red-black trees.mp4 60MB
- 05 Other Problems/003 Coloring problem.mp4 59MB
- 01 Introduction/002 Complexity theory.mp4 57MB
- 08 Machine Learning - Regression/007 Logistic regression example III - credit scoring.mp4 51MB
- 03 Data Structures/004 Binary search tree implementation - Node.mp4 50MB
- 10 Machine Learning - Tree Based Algorithms/003 Decision tree example II - iris data.mp4 50MB
- 08 Machine Learning - Regression/005 Logistic regression example - sigmoid function.mp4 47MB
- 09 Machine Learning - Classification/005 Naive bayesian classifier introduction.mp4 46MB
- 03 Data Structures/009 Heaps introduction.mp4 46MB
- 04 Graph Algorithms/013 Prims-Jarnik algorithm.mp4 45MB
- 03 Data Structures/013 Ternary search trees introduction.mp4 44MB
- 08 Machine Learning - Regression/003 Logistic regression introduction.mp4 43MB
- 05 Other Problems/005 Euler cycles - chinese postman problem.mp4 42MB
- 03 Data Structures/007 AVL tree implementation I.mp4 41MB
- 04 Graph Algorithms/006 Shortest path introduction.mp4 38MB
- 03 Data Structures/011 Heap implementation II - heapsort.mp4 38MB
- 09 Machine Learning - Classification/001 K-nearest neighbour introduction.mp4 37MB
- 04 Graph Algorithms/010 Spanning trees introduction.mp4 36MB
- 12 Machine Learning - Neural Networks/003 Training a neural network.mp4 36MB
- 03 Data Structures/001 Linked List introduction.mp4 35MB
- 12 Machine Learning - Neural Networks/004 Complex neural networks.mp4 35MB
- 11 Machine Learning - Clustering/001 K-means clustering introduction.mp4 34MB
- 03 Data Structures/014 Ternary search trees implementation I.mp4 33MB
- 03 Data Structures/010 Heap implementation I.mp4 32MB
- 03 Data Structures/003 Binary search tree introduction.mp4 32MB
- 10 Machine Learning - Tree Based Algorithms/001 Decision trees introduction.mp4 32MB
- 03 Data Structures/005 Binary Search Tree implementation final.mp4 32MB
- 12 Machine Learning - Neural Networks/002 Simple example - logical AND table.mp4 30MB
- 05 Other Problems/004 Backtracking - N queens problem.mp4 29MB
- 04 Graph Algorithms/001 Graph theory.mp4 29MB
- 04 Graph Algorithms/012 Kruskal algorithm II.mp4 28MB
- 06 Basic Sorting Algorithms/006 Radix sort.mp4 27MB
- 11 Machine Learning - Clustering/003 DBSCAN clustering introduction.mp4 26MB
- 12 Machine Learning - Neural Networks/007 Neural network example - XOR problem.mp4 25MB
- 12 Machine Learning - Neural Networks/005 Applications of neural networks.mp4 25MB
- 04 Graph Algorithms/003 Breadth-first search implementation.mp4 23MB
- 08 Machine Learning - Regression/001 Linear regression introduction.mp4 23MB
- 11 Machine Learning - Clustering/004 Hierarchical clustering introduction.mp4 23MB
- 09 Machine Learning - Classification/009 Support vector machine example II - image recognition.mp4 23MB
- 07 Machine Learning - Introduction/001 Introduction.mp4 22MB
- 08 Machine Learning - Regression/002 Linear regression example.mp4 22MB
- 03 Data Structures/015 Ternary search trees implementation II.mp4 21MB
- 09 Machine Learning - Classification/006 Naive bayesian example.mp4 21MB
- 08 Machine Learning - Regression/004 Cross validation.mp4 20MB
- 09 Machine Learning - Classification/007 Support vector machine SVM introduction.mp4 20MB
- 06 Basic Sorting Algorithms/001 Bubble sort.mp4 19MB
- 06 Basic Sorting Algorithms/004 Quicksort.mp4 19MB
- 06 Basic Sorting Algorithms/002 Insertion sort.mp4 19MB
- 06 Basic Sorting Algorithms/005 Counting sort.mp4 19MB
- 04 Graph Algorithms/005 Depth-first search implementation.mp4 18MB
- 06 Basic Sorting Algorithms/003 Merge sort.mp4 18MB
- 11 Machine Learning - Clustering/002 K-means clustering example.mp4 17MB
- 12 Machine Learning - Neural Networks/001 Introduction.mp4 17MB
- 08 Machine Learning - Regression/006 Logistic regression example II.mp4 16MB
- 10 Machine Learning - Tree Based Algorithms/004 Pruning and bagging.mp4 14MB
- 11 Machine Learning - Clustering/005 Hierarchical clustering example.mp4 14MB
- 04 Graph Algorithms/008 Bellman-Ford algorithm introduction.mp4 13MB
- 10 Machine Learning - Tree Based Algorithms/006 Boosting.mp4 12MB
- 02 Setup/001 Installing LiClipse.mp4 12MB
- 04 Graph Algorithms/002 Breadth-first search introduction.mp4 11MB
- 12 Machine Learning - Neural Networks/006 Deep learning.mp4 11MB
- 09 Machine Learning - Classification/008 Support vector machine example I.mp4 11MB
- 10 Machine Learning - Tree Based Algorithms/005 Random forest introduction.mp4 10MB
- 09 Machine Learning - Classification/002 K-nearest neighbour introduction - normalize data.mp4 10MB
- 04 Graph Algorithms/004 Depth-first search introduction.mp4 9MB
- 10 Machine Learning - Tree Based Algorithms/007 Random forest example I.mp4 9MB
- 10 Machine Learning - Tree Based Algorithms/008 Random forest example II - enhance credit scoring.mp4 9MB
- 09 Machine Learning - Classification/003 K-nearest neighbour example I.mp4 9MB
- 09 Machine Learning - Classification/004 K-nearest neighbour example II.mp4 8MB
- 13 Outro/001 Final words.mp4 6MB
- 10 Machine Learning - Tree Based Algorithms/002 Decision tree example I.mp4 6MB
- 01 Introduction/001 Introduction.mp4 4MB