589689.xyz

[] Coursera - Natural Language Processing

  • 收录时间:2019-06-21 19:06:11
  • 文件大小:2GB
  • 下载次数:103
  • 最近下载:2021-01-03 09:52:54
  • 磁力链接:

文件列表

  1. 002.How to from plain texts to their classification/009. Hashing trick in spam filtering.mp4 61MB
  2. 009.Statistical Machine Translation/028. Introduction to Machine Translation.mp4 57MB
  3. 008.Topic models/027. The zoo of topic models.mp4 51MB
  4. 002.How to from plain texts to their classification/006. Text preprocessing.mp4 51MB
  5. 003.Simple deep learning for text classification/010. Neural networks for words.mp4 51MB
  6. 005.Sequence tagging with probabilistic models/015. Hidden Markov Models.mp4 49MB
  7. 002.How to from plain texts to their classification/007. Feature extraction from text.mp4 48MB
  8. 012.Natural Language Understanding (NLU)/038. Intent classifier and slot tagger (NLU).mp4 48MB
  9. 007.Word and sentence embeddings/021. Explicit and implicit matrix factorization.mp4 46MB
  10. 013.Dialog Manager (DM)/041. State tracking in DM.mp4 45MB
  11. 009.Statistical Machine Translation/030. Word Alignment Models.mp4 43MB
  12. 006.Deep Learning for the same tasks/019. Whether you need to predict a next word or a label - LSTM is here to help!.mp4 43MB
  13. 007.Word and sentence embeddings/024. Why words From character to sentence embeddings.mp4 43MB
  14. 012.Natural Language Understanding (NLU)/037. Task-oriented dialog systems.mp4 42MB
  15. 005.Sequence tagging with probabilistic models/017. MEMMs, CRFs and other sequential models for Named Entity Recognition.mp4 42MB
  16. 011.Summarization and simplification tasks/036. Get to the point! Summarization with pointer-generator networks.mp4 41MB
  17. 007.Word and sentence embeddings/023. Word analogies without magic king man + woman != queen.mp4 40MB
  18. 010.Encoder-decoder-attention arhitecture/033. How to deal with a vocabulary.mp4 40MB
  19. 007.Word and sentence embeddings/022. Word2vec and doc2vec (and how to evaluate them).mp4 39MB
  20. 005.Sequence tagging with probabilistic models/016. Viterbi algorithm what are the most probable tags.mp4 39MB
  21. 010.Encoder-decoder-attention arhitecture/034. How to implement a conversational chat-bot.mp4 38MB
  22. 011.Summarization and simplification tasks/035. Sequence to sequence learning one-size fits all.mp4 37MB
  23. 002.How to from plain texts to their classification/008. Linear models for sentiment analysis.mp4 36MB
  24. 001.Introduction to NLP and our course/005. [Optional] Linguistic knowledge in NLP.mp4 35MB
  25. 004.Language modeling it's all about counting!/012. Count! N-gram language models.mp4 34MB
  26. 006.Deep Learning for the same tasks/018. Neural Language Models.mp4 31MB
  27. 010.Encoder-decoder-attention arhitecture/032. Attention mechanism.mp4 31MB
  28. 001.Introduction to NLP and our course/003. Main approaches in NLP.mp4 30MB
  29. 012.Natural Language Understanding (NLU)/040. Adding lexicon to NLU.mp4 28MB
  30. 007.Word and sentence embeddings/020. Distributional semantics bee and honey vs. bee an bumblebee.mp4 28MB
  31. 003.Simple deep learning for text classification/011. Neural networks for characters.mp4 28MB
  32. 004.Language modeling it's all about counting!/014. Smoothing what if we see new n-grams.mp4 27MB
  33. 013.Dialog Manager (DM)/042. Policy optimisation in DM.mp4 27MB
  34. 004.Language modeling it's all about counting!/013. Perplexity is our model surprised with a real text.mp4 27MB
  35. 001.Introduction to NLP and our course/004. Brief overview of the next weeks.mp4 26MB
  36. 008.Topic models/025. Topic modeling a way to navigate through text collections.mp4 26MB
  37. 008.Topic models/026. How to train PLSA.mp4 24MB
  38. 010.Encoder-decoder-attention arhitecture/031. Encoder-decoder architecture.mp4 22MB
  39. 009.Statistical Machine Translation/029. Noisy channel said in English, received in French.mp4 22MB
  40. 013.Dialog Manager (DM)/043. Final remarks.mp4 22MB
  41. 001.Introduction to NLP and our course/002. Welcome video.mp4 20MB
  42. 012.Natural Language Understanding (NLU)/039. Adding context to NLU.mp4 17MB
  43. 001.Introduction to NLP and our course/001. About this course.mp4 13MB
  44. 002.How to from plain texts to their classification/009. Hashing trick in spam filtering.srt 23KB
  45. 002.How to from plain texts to their classification/006. Text preprocessing.srt 20KB
  46. 003.Simple deep learning for text classification/010. Neural networks for words.srt 19KB
  47. 009.Statistical Machine Translation/028. Introduction to Machine Translation.srt 19KB
  48. 012.Natural Language Understanding (NLU)/038. Intent classifier and slot tagger (NLU).srt 18KB
  49. 002.How to from plain texts to their classification/007. Feature extraction from text.srt 18KB
  50. 013.Dialog Manager (DM)/041. State tracking in DM.srt 17KB
  51. 012.Natural Language Understanding (NLU)/037. Task-oriented dialog systems.srt 17KB
  52. 008.Topic models/027. The zoo of topic models.srt 17KB
  53. 005.Sequence tagging with probabilistic models/015. Hidden Markov Models.srt 17KB
  54. 009.Statistical Machine Translation/030. Word Alignment Models.srt 15KB
  55. 007.Word and sentence embeddings/021. Explicit and implicit matrix factorization.srt 15KB
  56. 011.Summarization and simplification tasks/036. Get to the point! Summarization with pointer-generator networks.srt 15KB
  57. 006.Deep Learning for the same tasks/019. Whether you need to predict a next word or a label - LSTM is here to help!.srt 15KB
  58. 007.Word and sentence embeddings/024. Why words From character to sentence embeddings.srt 15KB
  59. 010.Encoder-decoder-attention arhitecture/033. How to deal with a vocabulary.srt 14KB
  60. 005.Sequence tagging with probabilistic models/017. MEMMs, CRFs and other sequential models for Named Entity Recognition.srt 14KB
  61. 010.Encoder-decoder-attention arhitecture/034. How to implement a conversational chat-bot.srt 14KB
  62. 004.Language modeling it's all about counting!/012. Count! N-gram language models.srt 14KB
  63. 011.Summarization and simplification tasks/035. Sequence to sequence learning one-size fits all.srt 13KB
  64. 005.Sequence tagging with probabilistic models/016. Viterbi algorithm what are the most probable tags.srt 13KB
  65. 007.Word and sentence embeddings/023. Word analogies without magic king man + woman != queen.srt 13KB
  66. 001.Introduction to NLP and our course/005. [Optional] Linguistic knowledge in NLP.srt 13KB
  67. 007.Word and sentence embeddings/022. Word2vec and doc2vec (and how to evaluate them).srt 13KB
  68. 002.How to from plain texts to their classification/008. Linear models for sentiment analysis.srt 13KB
  69. 010.Encoder-decoder-attention arhitecture/032. Attention mechanism.srt 12KB
  70. 006.Deep Learning for the same tasks/018. Neural Language Models.srt 12KB
  71. 007.Word and sentence embeddings/020. Distributional semantics bee and honey vs. bee an bumblebee.srt 11KB
  72. 003.Simple deep learning for text classification/011. Neural networks for characters.srt 10KB
  73. 004.Language modeling it's all about counting!/013. Perplexity is our model surprised with a real text.srt 10KB
  74. 013.Dialog Manager (DM)/042. Policy optimisation in DM.srt 10KB
  75. 012.Natural Language Understanding (NLU)/040. Adding lexicon to NLU.srt 10KB
  76. 001.Introduction to NLP and our course/003. Main approaches in NLP.srt 10KB
  77. 001.Introduction to NLP and our course/004. Brief overview of the next weeks.srt 10KB
  78. 004.Language modeling it's all about counting!/014. Smoothing what if we see new n-grams.srt 9KB
  79. 008.Topic models/025. Topic modeling a way to navigate through text collections.srt 9KB
  80. 008.Topic models/026. How to train PLSA.srt 9KB
  81. 010.Encoder-decoder-attention arhitecture/031. Encoder-decoder architecture.srt 8KB
  82. 009.Statistical Machine Translation/029. Noisy channel said in English, received in French.srt 8KB
  83. 013.Dialog Manager (DM)/043. Final remarks.srt 7KB
  84. 001.Introduction to NLP and our course/002. Welcome video.srt 7KB
  85. 012.Natural Language Understanding (NLU)/039. Adding context to NLU.srt 7KB
  86. 001.Introduction to NLP and our course/001. About this course.srt 3KB
  87. [FTU Forum].url 252B
  88. [FreeCoursesOnline.Me].url 133B
  89. [FreeTutorials.Us].url 119B