[] Udemy - Simulate, understand, & visualize data like a data scientist
- 收录时间:2020-04-29 13:10:53
- 文件大小:432MB
- 下载次数:28
- 最近下载:2021-01-10 12:33:17
- 磁力链接:
-
文件列表
- 9. Spatiotemporal structure using forward models/4. Example Simulate human brain (EEG) data.mp4 34MB
- 9. Spatiotemporal structure using forward models/2. Forward model 2D sheet.mp4 31MB
- 4. Time series signals/3. Smooth transients.mp4 20MB
- 9. Spatiotemporal structure using forward models/3. Mixed overlapping forward models.mp4 18MB
- 4. Time series signals/6. Dipolar and multipolar chirps.mp4 15MB
- 3. Data distributions/2. Normal and uniform distributions.mp4 15MB
- 5. Time series noise/5. Multivariable correlated noise.mp4 13MB
- 3. Data distributions/4. Poisson distribution.mp4 13MB
- 2. Descriptive statistics and basic visualizations/2. Mean, median, standard deviation, variance.mp4 12MB
- 5. Time series noise/3. Pink noise (aka 1f aka fractal).mp4 12MB
- 1. Introductions/4. The importance of visualization.mp4 11MB
- 8. Data clustering in space/2. Clusters in 2D.mp4 11MB
- 3. Data distributions/3. QQ plot.mp4 11MB
- 3. Data distributions/7. Cohen's d for separating distributions.mp4 11MB
- 7. Image noise/4. Perlin noise in 2D.mp4 10MB
- 5. Time series noise/2. Seeded reproducible normal and uniform noise.mp4 10MB
- 6. Image signals/3. Sine patches and Gabor patches.mp4 9MB
- 8. Data clustering in space/3. Clusters in N-D.mp4 9MB
- 1. Introductions/2. Why and how to simulate data.mp4 9MB
- 4. Time series signals/2. Sharp transients.mp4 9MB
- 2. Descriptive statistics and basic visualizations/5. Violin plot.mp4 9MB
- 10. How to become a proactive data scientist/3. Write down or sketch the important results.mp4 9MB
- 7. Image noise/5. Filtered 2D-FFT noise.mp4 8MB
- 1. Introductions/3. What is signal and what is noise.mp4 8MB
- 4. Time series signals/4. Repeating sine, square, and triangle waves.mp4 8MB
- 2. Descriptive statistics and basic visualizations/3. Interquartile range.mp4 8MB
- 5. Time series noise/4. Brownian noise (aka random walk).mp4 8MB
- 1. Introductions/1. Overall goals of this course.mp4 8MB
- 6. Image signals/4. Geometric shapes.mp4 7MB
- 3. Data distributions/6. Measures of distribution quality (SNR and Fano factor).mp4 7MB
- 6. Image signals/2. Lines and edges.mp4 7MB
- 2. Descriptive statistics and basic visualizations/4. Histogram.mp4 6MB
- 3. Data distributions/5. Log-normal distribution.mp4 6MB
- 10. How to become a proactive data scientist/1. Proactive vs. reactive data science.mp4 6MB
- 4. Time series signals/5. Multicomponent oscillators.mp4 6MB
- 10. How to become a proactive data scientist/2. Understand data origins and features.mp4 5MB
- 7. Image noise/3. Checkerboard patterns and noise.mp4 5MB
- 7. Image noise/2. Image white noise.mp4 5MB
- 11. Conclusions and how to learn more/1. Conclusions and how to learn more.mp4 5MB
- 10. How to become a proactive data scientist/4. Don't give up -- every mistake is a learning opportunity!.mp4 5MB
- 9. Spatiotemporal structure using forward models/1.1 prodata_forwardModels.zip.zip 4MB
- 6. Image signals/5. Rings.mp4 4MB
- 7. Image noise/1.1 prodata_imageNoise.zip.zip 654KB
- 4. Time series signals/1.1 prodata_TimeSeriesSignals.zip.zip 653KB
- 5. Time series noise/1.1 prodata_TimeSeriesNoise.zip.zip 474KB
- 3. Data distributions/1.1 prodata_dataDistributions.zip.zip 305KB
- 8. Data clustering in space/1.1 prodata_dataClusters.zip.zip 279KB
- 6. Image signals/1.1 prodata_imageSignals.zip.zip 264KB
- 2. Descriptive statistics and basic visualizations/1.1 prodata_descriptiveVisualizations.zip.zip 237KB
- 9. Spatiotemporal structure using forward models/4. Example Simulate human brain (EEG) data.vtt 15KB
- 4. Time series signals/3. Smooth transients.vtt 12KB
- 9. Spatiotemporal structure using forward models/2. Forward model 2D sheet.vtt 9KB
- 4. Time series signals/6. Dipolar and multipolar chirps.vtt 9KB
- 3. Data distributions/2. Normal and uniform distributions.vtt 9KB
- 2. Descriptive statistics and basic visualizations/2. Mean, median, standard deviation, variance.vtt 8KB
- 1. Introductions/4. The importance of visualization.vtt 8KB
- 5. Time series noise/5. Multivariable correlated noise.vtt 8KB
- 3. Data distributions/3. QQ plot.vtt 7KB
- 3. Data distributions/4. Poisson distribution.vtt 7KB
- 3. Data distributions/7. Cohen's d for separating distributions.vtt 7KB
- 8. Data clustering in space/2. Clusters in 2D.vtt 7KB
- 5. Time series noise/3. Pink noise (aka 1f aka fractal).vtt 7KB
- 1. Introductions/2. Why and how to simulate data.vtt 6KB
- 2. Descriptive statistics and basic visualizations/5. Violin plot.vtt 6KB
- 5. Time series noise/2. Seeded reproducible normal and uniform noise.vtt 5KB
- 4. Time series signals/2. Sharp transients.vtt 5KB
- 10. How to become a proactive data scientist/3. Write down or sketch the important results.vtt 5KB
- 9. Spatiotemporal structure using forward models/3. Mixed overlapping forward models.vtt 5KB
- 6. Image signals/3. Sine patches and Gabor patches.vtt 5KB
- 7. Image noise/4. Perlin noise in 2D.vtt 5KB
- 1. Introductions/1. Overall goals of this course.vtt 5KB
- 5. Time series noise/4. Brownian noise (aka random walk).vtt 5KB
- 2. Descriptive statistics and basic visualizations/3. Interquartile range.vtt 5KB
- 3. Data distributions/6. Measures of distribution quality (SNR and Fano factor).vtt 4KB
- 10. How to become a proactive data scientist/1. Proactive vs. reactive data science.vtt 4KB
- 10. How to become a proactive data scientist/2. Understand data origins and features.vtt 4KB
- 7. Image noise/5. Filtered 2D-FFT noise.vtt 4KB
- 1. Introductions/3. What is signal and what is noise.vtt 4KB
- 4. Time series signals/4. Repeating sine, square, and triangle waves.vtt 4KB
- 3. Data distributions/5. Log-normal distribution.vtt 4KB
- 2. Descriptive statistics and basic visualizations/4. Histogram.vtt 4KB
- 6. Image signals/2. Lines and edges.vtt 4KB
- 4. Time series signals/5. Multicomponent oscillators.vtt 4KB
- 6. Image signals/4. Geometric shapes.vtt 3KB
- 7. Image noise/3. Checkerboard patterns and noise.vtt 3KB
- 11. Conclusions and how to learn more/1. Conclusions and how to learn more.vtt 3KB
- 6. Image signals/5. Rings.vtt 3KB
- 7. Image noise/2. Image white noise.vtt 3KB
- 10. How to become a proactive data scientist/4. Don't give up -- every mistake is a learning opportunity!.vtt 3KB
- 12. Discount coupon for related courses/2. Bonus Links to related courses.html 3KB
- 8. Data clustering in space/3. Clusters in N-D.vtt 2KB
- 12. Discount coupon for related courses/1. Join the community!.html 553B
- [Tutorialsplanet.NET].url 128B
- 9. Spatiotemporal structure using forward models/1. Course materials for this section (reader, MATLAB code, Python code).html 116B
- 3. Data distributions/1. Course materials for this section (reader, MATLAB code, Python code).html 76B
- 8. Data clustering in space/1. Course materials for this section (reader, MATLAB code, Python code).html 73B
- 7. Image noise/1. Course materials for this section (reader, MATLAB code, Python code).html 72B
- 6. Image signals/1. Course materials for this section (reader, MATLAB code, Python code).html 70B
- 5. Time series noise/1. Course materials for this section (reader, MATLAB code, Python code).html 69B
- 2. Descriptive statistics and basic visualizations/1. Course materials for this section (reader, MATLAB code, Python code).html 68B
- 4. Time series signals/1. Course materials for this section (reader, MATLAB code, Python code).html 66B