[] PacktPub - Master Deep Learning with TensorFlow 2.0 in Python [2019] [Video]
- 收录时间:2021-01-20 10:55:35
- 文件大小:2GB
- 下载次数:2
- 最近下载:2021-01-22 05:53:35
- 磁力链接:
-
文件列表
- 01.Welcome! Course introduction/0101.Meet your instructors and why you should study machine learning.mp4 85MB
- 06.Going deeper Introduction to deep neural networks/0603.Understanding deep nets in depth.mp4 58MB
- 02.Introduction to neural networks/0212.N-parameter gradient descent.mp4 58MB
- 02.Introduction to neural networks/0211.One parameter gradient descent.mp4 56MB
- 06.Going deeper Introduction to deep neural networks/0607.Backpropagation.mp4 53MB
- 03.Setting up the working environment/0306.Installing TensorFlow 2.mp4 51MB
- 02.Introduction to neural networks/0201.Introduction to neural networks.mp4 46MB
- 12.Business case/1204.Preprocessing the data.mp4 45MB
- 02.Introduction to neural networks/0206.The linear model. Multiple inputs and multiple outputs.mp4 42MB
- 05.TensorFlow - An introduction/0501.TensorFlow outline.mp4 42MB
- 02.Introduction to neural networks/0203.Types of machine learning.mp4 41MB
- 10.Preprocessing/1003.Standardization.mp4 40MB
- 13.Conclusion/1305.An overview of non-NN approaches.mp4 40MB
- 01.Welcome! Course introduction/0102.What does the course cover.mp4 39MB
- 13.Conclusion/1301.See how much you have learned.mp4 39MB
- 06.Going deeper Introduction to deep neural networks/0604.Why do we need non-linearities.mp4 38MB
- 06.Going deeper Introduction to deep neural networks/0605.Activation functions.mp4 38MB
- 05.TensorFlow - An introduction/0502.TensorFlow 2 intro.mp4 38MB
- 07.Overfitting/0703.Training and validation.mp4 38MB
- 09.Gradient descent and learning rates/0904.Learning rate schedules.mp4 37MB
- 11.The MNIST example/1105.Preprocess the data - shuffle and batch the data.mp4 37MB
- 04.Minimal example - your first machine learning algorithm/0401.Minimal example - part 1.mp4 36MB
- 03.Setting up the working environment/0302.Why Python and why Jupyter.mp4 35MB
- 09.Gradient descent and learning rates/0901.Stochastic gradient descent.mp4 34MB
- 07.Overfitting/0701.Underfitting and overfitting.mp4 34MB
- 02.Introduction to neural networks/0210.Cross-entropy loss.mp4 33MB
- 11.The MNIST example/1102.How to tackle the MNIST.mp4 33MB
- 05.TensorFlow - An introduction/0505.Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4 33MB
- 06.Going deeper Introduction to deep neural networks/0602.What is a deep net.mp4 33MB
- 07.Overfitting/0702.Underfitting and overfitting - classification.mp4 32MB
- 10.Preprocessing/1005.One-hot and binary encoding.mp4 32MB
- 05.TensorFlow - An introduction/0506.Interpreting the result and extracting the weights and bias.mp4 31MB
- 03.Setting up the working environment/0303.Installing Anaconda.mp4 31MB
- 07.Overfitting/0704.Training, validation, and test.mp4 31MB
- 04.Minimal example - your first machine learning algorithm/0404.Minimal example - part 4.mp4 30MB
- 12.Business case/1201.Exploring the dataset and identifying predictors.mp4 30MB
- 09.Gradient descent and learning rates/0906.Adaptive learning rate schedules.mp4 30MB
- 09.Gradient descent and learning rates/0907.Adaptive moment estimation.mp4 29MB
- 07.Overfitting/0706.Early stopping.mp4 28MB
- 13.Conclusion/1304.An overview of RNNs.mp4 27MB
- 11.The MNIST example/1106.Outline the model.mp4 27MB
- 11.The MNIST example/1104.Preprocess the data - create a validation dataset and scale the data.mp4 27MB
- 02.Introduction to neural networks/0202.Training the model.mp4 27MB
- 12.Business case/1206.Learning and interpreting the result.mp4 26MB
- 08.Initialization/0801.Initialization - Introduction.mp4 26MB
- 02.Introduction to neural networks/0204.The linear model.mp4 26MB
- 07.Overfitting/0705.N-fold cross validation.mp4 26MB
- 10.Preprocessing/1001.Preprocessing introduction.mp4 26MB
- 06.Going deeper Introduction to deep neural networks/0606.Softmax activation.mp4 25MB
- 06.Going deeper Introduction to deep neural networks/0608.Backpropagation - visual representation.mp4 24MB
- 04.Minimal example - your first machine learning algorithm/0402.Minimal example - part 2.mp4 24MB
- 02.Introduction to neural networks/0205.The linear model. Multiple inputs.mp4 24MB
- 02.Introduction to neural networks/0207.Graphical representation.mp4 22MB
- 05.TensorFlow - An introduction/0507.Customizing your model.mp4 22MB
- 12.Business case/1207.Setting an early stopping mechanism.mp4 21MB
- 02.Introduction to neural networks/0209.L2-norm loss.mp4 21MB
- 11.The MNIST example/1101.The dataset.mp4 21MB
- 06.Going deeper Introduction to deep neural networks/0601.Layers.mp4 21MB
- 11.The MNIST example/1108.Learning.mp4 20MB
- 04.Minimal example - your first machine learning algorithm/0403.Minimal example - part 3.mp4 20MB
- 03.Setting up the working environment/0305.The Jupyter dashboard - part 2.mp4 20MB
- 08.Initialization/0803.Xavier initialization.mp4 19MB
- 09.Gradient descent and learning rates/0903.Momentum.mp4 19MB
- 13.Conclusion/1303.An overview of CNNs.mp4 19MB
- 10.Preprocessing/1004.Dealing with categorical data.mp4 18MB
- 12.Business case/1205.Load the preprocessed data.mp4 18MB
- 02.Introduction to neural networks/0208.The objective function.mp4 18MB
- 13.Conclusion/1302.What's further out there in the machine and deep learning world.mp4 18MB
- 11.The MNIST example/1103.Importing the relevant packages and load the data.mp4 16MB
- 11.The MNIST example/1109.Testing the model.mp4 15MB
- 09.Gradient descent and learning rates/0902.Gradient descent pitfalls.mp4 14MB
- 12.Business case/1203.Balancing the dataset.mp4 14MB
- 05.TensorFlow - An introduction/0504.Types of file formats in TensorFlow and data handling.mp4 13MB
- 11.The MNIST example/1107.Select the loss and the optimizer.mp4 13MB
- 08.Initialization/0802.Types of simple initializations.mp4 12MB
- 10.Preprocessing/1002.Basic preprocessing.mp4 11MB
- 09.Gradient descent and learning rates/0905.Learning rate schedules. A picture.mp4 11MB
- 12.Business case/1208.Testing the model.mp4 10MB
- 12.Business case/1202.Outlining the business case solution.mp4 10MB
- 03.Setting up the working environment/0304.The Jupyter dashboard - part 1.mp4 9MB
- 05.TensorFlow - An introduction/0503.A Note on Coding in TensorFlow.mp4 8MB
- 03.Setting up the working environment/0301.Setting up the environment - An introduction - Do not skip, please!.mp4 7MB
- [FCS Forum].url 133B
- [FreeCourseSite.com].url 127B
- [CourseClub.ME].url 122B