[] [UDEMY] Beginner to Advanced Guide on Machine Learning with R Tool [FTU] 收录时间:2021-05-19 12:35:20 文件大小:339MB 下载次数:1 最近下载:2021-05-19 12:35:20 磁力链接: magnet:?xt=urn:btih:08fa1cc0fce7c5b246c1a62023a81991e9d164e5 立即下载 复制链接 文件列表 7. Module-7 Regression/7. 7.7 Implementation of Forecasting.mp4 38MB 3. Module-3 Classification/5. 3.5 Implementation of Naive-Bayes Classifier.mp4 34MB 7. Module-7 Regression/6. 7.6 Forecasting.mp4 20MB 1. Module-1 Introduction to Course/1. 1.1 Introduction to the Course.mp4 18MB 2. Module-2 Introduction to validation and its Methods/3. 2.3 Caret package.mp4 16MB 3. Module-3 Classification/3. 3.3 Implementation of KNN Algorithm.mp4 15MB 7. Module-7 Regression/2. 7.2 Implementation of Linear Regression.mp4 12MB 4. Module-4 Black Box Method-Neural network and SVM/3. 4.3 Implement Neural Network in R.mp4 12MB 6. Module-6 Clustering/2. 6.2 K-Means Clustering.mp4 11MB 5. Module-5 Tree Based Models/4. 5.4 Boosting.mp4 11MB 7. Module-7 Regression/3. 7.3 Multiple Covariates Regression.mp4 10MB 4. Module-4 Black Box Method-Neural network and SVM/7. 4.7 Implementation of SVM in R.mp4 9MB 5. Module-5 Tree Based Models/2. 5.2 Implementation of Decision Tree.mp4 9MB 6. Module-6 Clustering/3. 6.3 Implementation of K-Means Clustering.mp4 8MB 5. Module-5 Tree Based Models/3. 5.3 Bagging.mp4 8MB 5. Module-5 Tree Based Models/6. 5.6 Implementation of Random Forest.mp4 7MB 6. Module-6 Clustering/4. 6.4 Hierarchical Clustering.mp4 7MB 7. Module-7 Regression/5. 7.5 Implementation of Logistic Regression.mp4 7MB 3. Module-3 Classification/7. 3.7 Implementation of Linear Discriminant Analysis.mp4 6MB 3. Module-3 Classification/2. 3.2 KNN- K Nearest Neighbors.mp4 6MB 1. Module-1 Introduction to Course/4. 1.4 Techniques of Machine Learning.mp4 6MB 2. Module-2 Introduction to validation and its Methods/2. 2.2 Cross Validation Method.mp4 5MB 4. Module-4 Black Box Method-Neural network and SVM/2. 4.2 Conceptualizing of Neural Network.mp4 5MB 3. Module-3 Classification/4. 3.4 Naive-Bayes Classifier.mp4 5MB 4. Module-4 Black Box Method-Neural network and SVM/6. 4.6 Introduction to Support Vector Machine.mp4 5MB 5. Module-5 Tree Based Models/1. 5.1 Decision Tree.mp4 5MB 7. Module-7 Regression/4. 7.4 Logistic Regression.mp4 5MB 7. Module-7 Regression/1. 7.1 Predicting with Linear Regression.mp4 5MB 4. Module-4 Black Box Method-Neural network and SVM/5. 4.5 Implementation of Back Propagation Network.mp4 4MB 5. Module-5 Tree Based Models/5. 5.5 Introduction to Random Forest.mp4 4MB 1. Module-1 Introduction to Course/3. 1.3 What you will Learn.mp4 4MB 1. Module-1 Introduction to Course/2. 1.2 Pre-Requisite.mp4 4MB 2. Module-2 Introduction to validation and its Methods/1. 2.1 Introduction to Cross Validation.mp4 3MB 3. Module-3 Classification/1. 3.1 Introduction to Classification.mp4 3MB 4. Module-4 Black Box Method-Neural network and SVM/1. 4.1 Introduction to Artificial Neural Network.mp4 3MB 6. Module-6 Clustering/1. 6.1 Introduction to Clustering.mp4 3MB 4. Module-4 Black Box Method-Neural network and SVM/4. 4.4 Back Propagation.mp4 3MB 3. Module-3 Classification/6. 3.6 Linear Discriminant Analysis.mp4 2MB 3. Module-3 Classification/5. 3.5 Implementation of Naive-Bayes Classifier.vtt 15KB 2. Module-2 Introduction to validation and its Methods/3.1 Programs.zip.zip 11KB 3. Module-3 Classification/3.1 Programs.zip.zip 11KB 3. Module-3 Classification/5.1 Programs.zip.zip 11KB 3. Module-3 Classification/7.1 Programs.zip.zip 11KB 4. Module-4 Black Box Method-Neural network and SVM/3.1 Programs.zip.zip 11KB 4. Module-4 Black Box Method-Neural network and SVM/5.1 Programs.zip.zip 11KB 4. Module-4 Black Box Method-Neural network and SVM/7.1 Programs.zip.zip 11KB 5. Module-5 Tree Based Models/2.1 Programs.zip.zip 11KB 5. Module-5 Tree Based Models/3.1 Programs.zip.zip 11KB 5. Module-5 Tree Based Models/4.1 Programs.zip.zip 11KB 5. Module-5 Tree Based Models/6.1 Programs.zip.zip 11KB 6. Module-6 Clustering/3.1 Programs.zip.zip 11KB 6. Module-6 Clustering/4.1 Programs.zip.zip 11KB 7. Module-7 Regression/2.1 Programs.zip.zip 11KB 7. Module-7 Regression/3.1 Programs.zip.zip 11KB 7. Module-7 Regression/5.1 Programs.zip.zip 11KB 7. Module-7 Regression/7.1 Programs.zip.zip 11KB 2. Module-2 Introduction to validation and its Methods/3. 2.3 Caret package.vtt 8KB 6. Module-6 Clustering/2. 6.2 K-Means Clustering.vtt 8KB 3. Module-3 Classification/3. 3.3 Implementation of KNN Algorithm.vtt 7KB 5. Module-5 Tree Based Models/4. 5.4 Boosting.vtt 6KB 7. Module-7 Regression/2. 7.2 Implementation of Linear Regression.vtt 6KB 7. Module-7 Regression/3. 7.3 Multiple Covariates Regression.vtt 5KB 4. Module-4 Black Box Method-Neural network and SVM/3. 4.3 Implement Neural Network in R.vtt 5KB 1. Module-1 Introduction to Course/4. 1.4 Techniques of Machine Learning.vtt 4KB 4. Module-4 Black Box Method-Neural network and SVM/7. 4.7 Implementation of SVM in R.vtt 4KB 5. Module-5 Tree Based Models/2. 5.2 Implementation of Decision Tree.vtt 4KB 3. Module-3 Classification/2. 3.2 KNN- K Nearest Neighbors.vtt 4KB 2. Module-2 Introduction to validation and its Methods/2. 2.2 Cross Validation Method.vtt 4KB 5. Module-5 Tree Based Models/3. 5.3 Bagging.vtt 4KB 6. Module-6 Clustering/4. 6.4 Hierarchical Clustering.vtt 3KB 5. Module-5 Tree Based Models/6. 5.6 Implementation of Random Forest.vtt 3KB 6. Module-6 Clustering/3. 6.3 Implementation of K-Means Clustering.vtt 3KB 7. Module-7 Regression/5. 7.5 Implementation of Logistic Regression.vtt 3KB 3. Module-3 Classification/4. 3.4 Naive-Bayes Classifier.vtt 3KB 3. Module-3 Classification/7. 3.7 Implementation of Linear Discriminant Analysis.vtt 3KB 7. Module-7 Regression/6. 7.6 Forecasting.vtt 3KB 4. Module-4 Black Box Method-Neural network and SVM/6. 4.6 Introduction to Support Vector Machine.vtt 3KB 7. Module-7 Regression/4. 7.4 Logistic Regression.vtt 3KB 7. Module-7 Regression/7. 7.7 Implementation of Forecasting.vtt 3KB 5. Module-5 Tree Based Models/1. 5.1 Decision Tree.vtt 3KB 7. Module-7 Regression/1. 7.1 Predicting with Linear Regression.vtt 3KB 1. Module-1 Introduction to Course/1. 1.1 Introduction to the Course.vtt 3KB 4. Module-4 Black Box Method-Neural network and SVM/2. 4.2 Conceptualizing of Neural Network.vtt 2KB 5. Module-5 Tree Based Models/5. 5.5 Introduction to Random Forest.vtt 2KB 2. Module-2 Introduction to validation and its Methods/1. 2.1 Introduction to Cross Validation.vtt 2KB 1. Module-1 Introduction to Course/3. 1.3 What you will Learn.vtt 2KB 3. Module-3 Classification/1. 3.1 Introduction to Classification.vtt 2KB 6. Module-6 Clustering/1. 6.1 Introduction to Clustering.vtt 2KB 4. Module-4 Black Box Method-Neural network and SVM/4. 4.4 Back Propagation.vtt 2KB 4. Module-4 Black Box Method-Neural network and SVM/1. 4.1 Introduction to Artificial Neural Network.vtt 2KB 4. Module-4 Black Box Method-Neural network and SVM/5. 4.5 Implementation of Back Propagation Network.vtt 2KB 3. Module-3 Classification/6. 3.6 Linear Discriminant Analysis.vtt 1KB 1. Module-1 Introduction to Course/2. 1.2 Pre-Requisite.vtt 776B 0. Websites you may like/1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url 328B 0. Websites you may like/5. (Discuss.FTUForum.com) FTU Discussion Forum.url 294B 0. Websites you may like/2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url 286B 0. Websites you may like/4. (FTUApps.com) Download Cracked Developers Applications For Free.url 239B 0. Websites you may like/How you can help Team-FTU.txt 237B 0. Websites you may like/3. (NulledPremium.com) Download Cracked Website Themes, Plugins, Scripts And Stock Images.url 163B