[] Udemy - Artificial Intelligence Masterclass
- 收录时间:2020-01-18 08:35:14
- 文件大小:6GB
- 下载次数:90
- 最近下载:2021-01-13 15:27:04
- 磁力链接:
-
文件列表
- 12. The Final Run/1. The Whole Implementation.mp4 274MB
- 1. Introduction/2. Introduction + Course Structure + Demo.mp4 195MB
- 3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.mp4 194MB
- 7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.mp4 187MB
- 6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.mp4 187MB
- 9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).mp4 177MB
- 9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).mp4 163MB
- 12. The Final Run/3. Installing the required packages.mp4 159MB
- 10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.mp4 154MB
- 11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.mp4 149MB
- 9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.mp4 147MB
- 11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).mp4 144MB
- 11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).mp4 144MB
- 3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.mp4 140MB
- 7. Step 6 - Recurrent Neural Network/5. LSTMs.mp4 137MB
- 1. Introduction/4. Your Three Best Resources.mp4 134MB
- 6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.mp4 134MB
- 9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.mp4 131MB
- 9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.mp4 127MB
- 9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.mp4 125MB
- 12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.mp4 125MB
- 7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.mp4 121MB
- 11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.mp4 119MB
- 3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.mp4 118MB
- 2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.mp4 112MB
- 7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.mp4 111MB
- 9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.mp4 109MB
- 11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.mp4 109MB
- 11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.mp4 108MB
- 3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.mp4 108MB
- 9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.mp4 99MB
- 2. Step 1 - Artificial Neural Network/3. The Neuron.mp4 99MB
- 3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.mp4 98MB
- 4. Step 3 - AutoEncoder/3. What are AutoEncoders.mp4 95MB
- 6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.mp4 93MB
- 8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.mp4 83MB
- 2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.mp4 82MB
- 6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.mp4 80MB
- 9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.mp4 77MB
- 5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.mp4 73MB
- 6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.mp4 72MB
- 10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.mp4 69MB
- 2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.mp4 67MB
- 8. Step 7 - Mixture Density Network/3. Mixture Density Networks.mp4 65MB
- 2. Step 1 - Artificial Neural Network/7. Gradient Descent.mp4 61MB
- 6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.mp4 59MB
- 4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.mp4 57MB
- 3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.mp4 53MB
- 4. Step 3 - AutoEncoder/5. Training an AutoEncoder.mp4 50MB
- 2. Step 1 - Artificial Neural Network/4. The Activation Function.mp4 45MB
- 8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.mp4 45MB
- 2. Step 1 - Artificial Neural Network/9. Backpropagation.mp4 43MB
- 3. Step 2 - Convolutional Neural Network/9. Summary.mp4 30MB
- 12. The Final Run/5. THANK YOU bonus video.mp4 29MB
- 4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.mp4 28MB
- 5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.mp4 26MB
- 5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.mp4 26MB
- 4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.mp4 24MB
- 1. Introduction/1. Updates on Udemy Reviews.mp4 22MB
- 3. Step 2 - Convolutional Neural Network/2. Plan of Attack.mp4 22MB
- 4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.mp4 21MB
- 7. Step 6 - Recurrent Neural Network/7. LSTM Variations.mp4 20MB
- 12. The Final Run/2.1 AI Masterclass.zip.zip 17MB
- 4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.mp4 16MB
- 2. Step 1 - Artificial Neural Network/2. Plan of Attack.mp4 16MB
- 4. Step 3 - AutoEncoder/2. Plan of Attack.mp4 16MB
- 4. Step 3 - AutoEncoder/11. Deep AutoEncoders.mp4 12MB
- 7. Step 6 - Recurrent Neural Network/2. Plan of Attack.mp4 10MB
- 4. Step 3 - AutoEncoder/4. A Note on Biases.mp4 9MB
- 3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.mp4 8MB
- 3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.srt 28KB
- 12. The Final Run/1. The Whole Implementation.srt 28KB
- 7. Step 6 - Recurrent Neural Network/5. LSTMs.srt 28KB
- 10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.srt 27KB
- 6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.srt 26KB
- 3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.srt 25KB
- 3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.vtt 25KB
- 12. The Final Run/1. The Whole Implementation.vtt 25KB
- 2. Step 1 - Artificial Neural Network/3. The Neuron.srt 25KB
- 7. Step 6 - Recurrent Neural Network/5. LSTMs.vtt 25KB
- 7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.srt 24KB
- 10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.vtt 24KB
- 6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.srt 23KB
- 3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.srt 23KB
- 6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.vtt 23KB
- 3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.srt 22KB
- 3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.vtt 22KB
- 1. Introduction/2. Introduction + Course Structure + Demo.srt 22KB
- 9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.srt 22KB
- 2. Step 1 - Artificial Neural Network/3. The Neuron.vtt 22KB
- 3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.srt 21KB
- 7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.srt 21KB
- 7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.vtt 21KB
- 7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.srt 21KB
- 9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).srt 20KB
- 3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.vtt 20KB
- 6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.vtt 20KB
- 9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.srt 20KB
- 3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.vtt 19KB
- 9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.vtt 19KB
- 1. Introduction/2. Introduction + Course Structure + Demo.vtt 19KB
- 2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.srt 19KB
- 2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.srt 19KB
- 9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).srt 19KB
- 3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.vtt 18KB
- 7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.vtt 18KB
- 7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.vtt 18KB
- 10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.srt 18KB
- 9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.srt 18KB
- 9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).vtt 18KB
- 9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.vtt 18KB
- 11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.srt 18KB
- 12. The Final Run/3. Installing the required packages.srt 18KB
- 11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).srt 17KB
- 6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.srt 17KB
- 2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.vtt 17KB
- 9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.srt 17KB
- 2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.vtt 17KB
- 9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).vtt 16KB
- 11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).srt 16KB
- 9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.srt 16KB
- 4. Step 3 - AutoEncoder/3. What are AutoEncoders.srt 16KB
- 10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.vtt 16KB
- 12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.srt 16KB
- 9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.vtt 16KB
- 11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.vtt 15KB
- 11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).vtt 15KB
- 11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.srt 15KB
- 12. The Final Run/3. Installing the required packages.vtt 15KB
- 6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.vtt 15KB
- 9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.vtt 15KB
- 11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).vtt 15KB
- 9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.srt 15KB
- 9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.vtt 14KB
- 4. Step 3 - AutoEncoder/3. What are AutoEncoders.vtt 14KB
- 2. Step 1 - Artificial Neural Network/7. Gradient Descent.srt 14KB
- 8. Step 7 - Mixture Density Network/3. Mixture Density Networks.srt 14KB
- 12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.vtt 13KB
- 6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.srt 13KB
- 11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.vtt 13KB
- 1. Introduction/4. Your Three Best Resources.srt 13KB
- 6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.srt 13KB
- 11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.srt 13KB
- 9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.srt 13KB
- 9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.vtt 13KB
- 8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.srt 13KB
- 2. Step 1 - Artificial Neural Network/7. Gradient Descent.vtt 12KB
- 2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.srt 12KB
- 8. Step 7 - Mixture Density Network/3. Mixture Density Networks.vtt 12KB
- 1. Introduction/4. Your Three Best Resources.vtt 12KB
- 2. Step 1 - Artificial Neural Network/4. The Activation Function.srt 12KB
- 6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.vtt 12KB
- 6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.vtt 11KB
- 11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.vtt 11KB
- 9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.vtt 11KB
- 8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.vtt 11KB
- 5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.srt 11KB
- 9. Step 8 - Implementing the MDN-RNN/11. Full Code Section.html 11KB
- 2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.vtt 11KB
- 6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.srt 11KB
- 2. Step 1 - Artificial Neural Network/4. The Activation Function.vtt 10KB
- 11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.srt 10KB
- 5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.vtt 10KB
- 4. Step 3 - AutoEncoder/5. Training an AutoEncoder.srt 10KB
- 6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.vtt 9KB
- 3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.srt 9KB
- 11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.vtt 9KB
- 4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.srt 9KB
- 4. Step 3 - AutoEncoder/5. Training an AutoEncoder.vtt 8KB
- 3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.vtt 8KB
- 4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.vtt 8KB
- 6. Step 5 - Implementing the CNN-VAE/9. The Keras Implementation.html 8KB
- 8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.srt 8KB
- 2. Step 1 - Artificial Neural Network/9. Backpropagation.srt 7KB
- 8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.vtt 7KB
- 5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.srt 7KB
- 2. Step 1 - Artificial Neural Network/9. Backpropagation.vtt 6KB
- 5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.srt 6KB
- 3. Step 2 - Convolutional Neural Network/9. Summary.srt 6KB
- 5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.vtt 6KB
- 4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.srt 6KB
- 5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.vtt 5KB
- 3. Step 2 - Convolutional Neural Network/9. Summary.vtt 5KB
- 3. Step 2 - Convolutional Neural Network/2. Plan of Attack.srt 5KB
- 9. Step 8 - Implementing the MDN-RNN/12. The Keras Implementation.html 5KB
- 4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.vtt 5KB
- 7. Step 6 - Recurrent Neural Network/7. LSTM Variations.srt 5KB
- 3. Step 2 - Convolutional Neural Network/2. Plan of Attack.vtt 5KB
- 7. Step 6 - Recurrent Neural Network/7. LSTM Variations.vtt 4KB
- 6. Step 5 - Implementing the CNN-VAE/8. Full Code Section.html 4KB
- 2. Step 1 - Artificial Neural Network/2. Plan of Attack.srt 4KB
- 4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.srt 4KB
- 4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.srt 4KB
- 2. Step 1 - Artificial Neural Network/2. Plan of Attack.vtt 4KB
- 1. Introduction/1. Updates on Udemy Reviews.srt 3KB
- 7. Step 6 - Recurrent Neural Network/2. Plan of Attack.srt 3KB
- 4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.vtt 3KB
- 4. Step 3 - AutoEncoder/2. Plan of Attack.srt 3KB
- 4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.vtt 3KB
- 7. Step 6 - Recurrent Neural Network/2. Plan of Attack.vtt 3KB
- 1. Introduction/1. Updates on Udemy Reviews.vtt 3KB
- 4. Step 3 - AutoEncoder/2. Plan of Attack.vtt 3KB
- 9. Step 8 - Implementing the MDN-RNN/1. Welcome to Step 8 - Implementing the MDN-RNN.html 3KB
- 4. Step 3 - AutoEncoder/11. Deep AutoEncoders.srt 3KB
- 3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.srt 3KB
- 4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.srt 2KB
- 4. Step 3 - AutoEncoder/11. Deep AutoEncoders.vtt 2KB
- 1. Introduction/3. BONUS Learning Paths.html 2KB
- 12. The Final Run/5. THANK YOU bonus video.srt 2KB
- 6. Step 5 - Implementing the CNN-VAE/1. Welcome to Step 5 - Implementing the CNN-VAE.html 2KB
- 3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.vtt 2KB
- 4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.vtt 2KB
- 4. Step 3 - AutoEncoder/4. A Note on Biases.srt 2KB
- 12. The Final Run/5. THANK YOU bonus video.vtt 2KB
- 4. Step 3 - AutoEncoder/4. A Note on Biases.vtt 2KB
- 11. Step 10 - Deep NeuroEvolution/1. Welcome to Step 10 - Deep NeuroEvolution.html 1KB
- 13. Bonus Lectures/1. YOUR SPECIAL BONUS.html 1KB
- 12. The Final Run/2. Download the whole AI Masterclass folder here.html 1KB
- 1. Introduction/5. Download the Resources here.html 790B
- 1. Introduction/6. Meet your instructors!.html 723B
- 2. Step 1 - Artificial Neural Network/1. Welcome to Step 1 - Artificial Neural Network.html 605B
- 8. Step 7 - Mixture Density Network/1. Welcome to Step 7 - Mixture Density Network.html 517B
- 7. Step 6 - Recurrent Neural Network/1. Welcome to Step 6 - Recurrent Neural Network.html 507B
- 3. Step 2 - Convolutional Neural Network/1. Welcome to Step 2 - Convolutional Neural Network.html 430B
- 10. Step 9 - Reinforcement Learning/1. Welcome to Step 9 - Reinforcement Learning.html 424B
- 5. Step 4 - Variational AutoEncoder/1. Welcome to Step 4 - Variational AutoEncoder.html 423B
- 4. Step 3 - AutoEncoder/1. Welcome to Step 3 - AutoEncoder.html 418B
- 10. Step 9 - Reinforcement Learning/4. Full Code Section.html 393B
- 0. Websites you may like/1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url 328B
- 0. Websites you may like/5. (Discuss.FTUForum.com) FTU Discussion Forum.url 294B
- 0. Websites you may like/2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url 286B
- 0. Websites you may like/4. (FTUApps.com) Download Cracked Developers Applications For Free.url 239B
- 0. Websites you may like/How you can help Team-FTU.txt 237B
- 0. Websites you may like/3. (NulledPremium.com) Download Cracked Website Themes, Plugins, Scripts And Stock Images.url 163B