[] MANNING - Graph-Powered Machine Learning [Video Edition]
- 收录时间:2022-06-18 02:26:44
- 文件大小:5GB
- 下载次数:1
- 最近下载:2022-06-18 02:26:44
- 磁力链接:
-
文件列表
- 28-Part 2 Recommendations.mp4 149MB
- 36-Chapter 5 Collaborative filtering.mp4 99MB
- 76-Chapter 12 Knowledge graph building - Entities.mp4 94MB
- 37-Chapter 5 Collaborative filtering recommendations.mp4 93MB
- 48-Chapter 7 Providing recommendations.mp4 86MB
- 49-Chapter 7 Providing recommendations.mp4 85MB
- 61-Chapter 9 Identifying fraudulent transactions.mp4 83MB
- 09-Chapter 2 Graph data engineering.mp4 82MB
- 44-Chapter 6 Providing recommendations.mp4 81MB
- 73-Chapter 11 NLP and graphs.mp4 80MB
- 16-Chapter 2 Native vs. non-native graph databases.mp4 80MB
- 63-Chapter 10 Social network analysis against fraud.mp4 80MB
- 19-Chapter 3 Managing data sources.mp4 77MB
- 13-Chapter 2 Graphs are valuable for master data management.mp4 76MB
- 08-Chapter 1 The role of graphs in machine learning.mp4 74MB
- 35-Chapter 4 Providing recommendations.mp4 73MB
- 07-Chapter 1 Graphs as models of networks.mp4 71MB
- 15-Chapter 2 Sharding.mp4 71MB
- 74-Chapter 11 NLP and graphs.mp4 70MB
- 02-Chapter 1 Machine learning and graphs - An introduction.mp4 70MB
- 38-Chapter 5 Computing the nearest neighbor network.mp4 69MB
- 58-Chapter 9 Proximity-based algorithms.mp4 69MB
- 77-Chapter 12 Knowledge graph building - Relationships.mp4 69MB
- 43-Chapter 6 The events chain and the session graph.mp4 68MB
- 46-Chapter 7 Context-aware and hybrid recommendations.mp4 68MB
- 29-Chapter 4 Content-based recommendations.mp4 67MB
- 34-Chapter 4 Providing recommendations.mp4 66MB
- 18-Chapter 3 Graphs in machine learning applications.mp4 66MB
- 69-Chapter 10 Cluster-based methods.mp4 66MB
- 82-Appendix A. Machine learning algorithms taxonomy.mp4 65MB
- 45-Chapter 6 Session-based k-NN.mp4 64MB
- 21-Chapter 3 Recommend items.mp4 64MB
- 30-Chapter 4 Representing item features.mp4 63MB
- 42-Chapter 6 Session-based recommendations.mp4 62MB
- 67-Chapter 10 Centrality metrics.mp4 61MB
- 31-Chapter 4 Representing item features.mp4 60MB
- 75-Chapter 12 Knowledge graphs.mp4 60MB
- 71-Chapter 11 Graph-based natural language processing.mp4 58MB
- 33-Chapter 4 Providing recommendations.mp4 57MB
- 25-Chapter 3 Monitoring a subject.mp4 56MB
- 56-Chapter 8 Warm-up - Basic approaches.mp4 55MB
- 40-Chapter 5 Providing recommendations.mp4 54MB
- 23-Chapter 3 Find keywords in a document.mp4 54MB
- 72-Chapter 11 A basic approach - Store and access sequence of words.mp4 54MB
- 05-Chapter 1 Performance.mp4 53MB
- 79-Chapter 12 Unsupervised keyword extraction.mp4 53MB
- 27-Chapter 3 Leftover - Deep learning and graph neural networks.mp4 53MB
- 20-Chapter 3 Detect a fraud.mp4 52MB
- 14-Chapter 2 Graph databases.mp4 52MB
- 60-Chapter 9 Creating the k-nearest neighbors graph.mp4 52MB
- 50-Chapter 7 Advantages of the graph approach.mp4 52MB
- 10-Chapter 2 Velocity.mp4 51MB
- 68-Chapter 10 Collective inference algorithms.mp4 51MB
- 81-Chapter 12 Keyword co-occurrence graph.mp4 51MB
- 84-Appendix C Graphs for defining complex processing workflows.mp4 50MB
- 59-Chapter 9 Distance-based approach.mp4 50MB
- 04-Chapter 1 Machine learning challenges.mp4 50MB
- 11-Chapter 2 Graphs in the big data platform.mp4 49MB
- 53-Chapter 8 Basic approaches to graph-powered fraud detection.mp4 48MB
- 22-Chapter 3 Algorithms.mp4 48MB
- 39-Chapter 5 Computing the nearest neighbor network.mp4 48MB
- 55-Chapter 8 The role of graphs in fighting fraud.mp4 47MB
- 57-Chapter 8 Identifying a fraud ring.mp4 47MB
- 64-Chapter 10 Social network analysis concepts.mp4 46MB
- 66-Chapter 10 Neighborhood metrics.mp4 46MB
- 54-Chapter 8 Fraud prevention and detection.mp4 45MB
- 83-Appendix C Graphs for processing patterns and workflows.mp4 44MB
- 12-Chapter 2 Graphs are valuable for big data.mp4 43MB
- 47-Chapter 7 Representing contextual information.mp4 43MB
- 85-Appendix D. Representing graphs.mp4 41MB
- 41-Chapter 5 Dealing with the cold-start problem.mp4 40MB
- 03-Chapter 1 Business understanding.mp4 39MB
- 51-Chapter 7 Providing recommendations.mp4 39MB
- 78-Chapter 12 Semantic networks.mp4 38MB
- 26-Chapter 3 Visualization.mp4 38MB
- 17-Chapter 2 Label property graphs.mp4 38MB
- 80-Chapter 12 Unsupervised keyword extraction.mp4 36MB
- 52-Part 3 Fighting fraud.mp4 34MB
- 32-Chapter 4 User modeling.mp4 34MB
- 06-Chapter 1 Graphs.mp4 33MB
- 62-Chapter 9 Identifying fraudulent transactions.mp4 33MB
- 65-Chapter 10 Score-based methods.mp4 32MB
- 24-Chapter 3 Storing and accessing machine learning models.mp4 31MB
- 70-Part 4 Taming text with graphs.mp4 24MB
- 01-Part 1 Introduction.mp4 21MB
- 0. Websites you may like/1. Get Free Premium Accounts Daily On Our Discord Server!.txt 1KB
- 0. Websites you may like/2. OneHack.us Premium Cracked Accounts-Tutorials-Guides-Articles Community Based Forum.url 377B
- 0. Websites you may like/4. FreeCoursesOnline.io Download Udacity, Masterclass, Lynda, PHLearn, etc Free.url 290B
- 0. Websites you may like/3. FTUApps.com Download Cracked Developers Applications For Free.url 239B