[] Udemy - Complete Data Science Training with Python for Data Analysis 收录时间:2020-02-15 09:53:52 文件大小:2GB 下载次数:26 最近下载:2020-12-12 18:12:26 磁力链接: magnet:?xt=urn:btih:13f2a54c3007f7d6e34ce9e3cbb37beb7e3e747f 立即下载 复制链接 文件列表 1. Introduction to the Data Science in Python Bootcamp/3.1 scriptsLecture.zip.zip 308MB 13. Miscellaneous Lectures & Information/5. Data Imputation.mp4 56MB 6. Introduction to Data Visualizations/6. Barplot.mp4 54MB 4. Introduction to Pandas/6. Read in HTML Data.mp4 51MB 1. Introduction to the Data Science in Python Bootcamp/6. Introduction to the Python Data Science Environment.mp4 40MB 6. Introduction to Data Visualizations/8. Line Chart.mp4 37MB 3. Introduction to Numpy/3. Numpy Operations.mp4 37MB 8. Statistical Inference & Relationship Between Variables/9. Conditions of Linear Regression-Check in Python.mp4 33MB 7. Statistical Data Analysis-Basic/5. Grouping & Summarizing Data by Categories.mp4 33MB 8. Statistical Inference & Relationship Between Variables/7. Linear Regression-Implementation in Python.mp4 30MB 6. Introduction to Data Visualizations/5. Scatter Plot-Visualize the Relationship Between 2 Continuous Variables.mp4 30MB 1. Introduction to the Data Science in Python Bootcamp/2. Introduction to the Course & Instructor.mp4 30MB 6. Introduction to Data Visualizations/3. Histograms-Visualize the Distribution of Continuous Numerical Variables.mp4 29MB 10. Unsupervised Learning in Python/8. Hierarchical Clustering-practical.mp4 29MB 5. Data Pre-ProcessingWrangling/12. Merging and Joining Data Frames.mp4 29MB 8. Statistical Inference & Relationship Between Variables/12. Logistic Regression.mp4 29MB 11. Supervised Learning/5. RF-Classification.mp4 28MB 11. Supervised Learning/2. Data Preparation for Supervised Learning.mp4 28MB 8. Statistical Inference & Relationship Between Variables/3. Test the Difference Between More Than Two Groups.mp4 28MB 5. Data Pre-ProcessingWrangling/5. Subset and Index Data.mp4 28MB 5. Data Pre-ProcessingWrangling/6. Basic Data Grouping Based on Qualitative Attributes.mp4 27MB 7. Statistical Data Analysis-Basic/1. What is Statistical Data Analysis.mp4 25MB 4. Introduction to Pandas/1. Data Structures in Python.mp4 25MB 1. Introduction to the Data Science in Python Bootcamp/4. Introduction to the Python Data Science Tool.mp4 25MB 11. Supervised Learning/1. What is This Section About.mp4 25MB 8. Statistical Inference & Relationship Between Variables/6. Linear Regression-Theory.mp4 25MB 5. Data Pre-ProcessingWrangling/10. Rank and Sort Data.mp4 24MB 5. Data Pre-ProcessingWrangling/8. Reshaping.mp4 24MB 5. Data Pre-ProcessingWrangling/9. Pivoting.mp4 24MB 11. Supervised Learning/3. Pointers on Evaluating the Accuracy of Classification and Regression Modelling.mp4 24MB 5. Data Pre-ProcessingWrangling/11. Concatenate.mp4 24MB 11. Supervised Learning/6. RF-Regression.mp4 24MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/1. Theory Behind ANN and DNN.mp4 23MB 3. Introduction to Numpy/2. Create Numpy Arrays.mp4 21MB 7. Statistical Data Analysis-Basic/2. Some Pointers on Collecting Data for Statistical Studies.mp4 21MB 8. Statistical Inference & Relationship Between Variables/5. Correlation Analysis.mp4 21MB 6. Introduction to Data Visualizations/1. What is Data Visualization.mp4 21MB 11. Supervised Learning/4. Using Logistic Regression as a Classification Model.mp4 21MB 10. Unsupervised Learning in Python/3. KMeans-implementation on the iris data.mp4 20MB 5. Data Pre-ProcessingWrangling/2. Removing NAsNo Values From Our Data.mp4 19MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/6. MLP with PCA on a Large Dataset.mp4 19MB 10. Unsupervised Learning in Python/6. How Do We Select the Number of Clusters.mp4 19MB 4. Introduction to Pandas/5. Reading in JSON Data.mp4 19MB 11. Supervised Learning/10. knn-Classification.mp4 18MB 8. Statistical Inference & Relationship Between Variables/2. Test the Difference Between Two Groups.mp4 18MB 7. Statistical Data Analysis-Basic/4. Explore the Quantitative Data Descriptive Statistics.mp4 17MB 6. Introduction to Data Visualizations/2. Some Theoretical Principles Behind Data Visualization.mp4 17MB 7. Statistical Data Analysis-Basic/9. Check for Normal Distribution.mp4 16MB 3. Introduction to Numpy/4. Matrix Arithmetic and Linear Systems.mp4 16MB 9. Machine Learning for Data Science/2. What is Machine Learning (ML) About Some Theoretical Pointers.mp4 16MB 5. Data Pre-ProcessingWrangling/4. Drop ColumnRow.mp4 16MB 4. Introduction to Pandas/3. Read in CSV Data Using Pandas.mp4 15MB 11. Supervised Learning/12. Gradient Boosting-classification.mp4 15MB 3. Introduction to Numpy/9. Numpy for Statistical Operation.mp4 15MB 5. Data Pre-ProcessingWrangling/3. Basic Data Handling Starting with Conditional Data Selection.mp4 15MB 3. Introduction to Numpy/6. Numpy for Basic Matrix Arithmetic.mp4 14MB 7. Statistical Data Analysis-Basic/11. Confidence Interval-Theory.mp4 14MB 9. Machine Learning for Data Science/1. How is Machine Learning Different from Statistical Data Analysis.mp4 14MB 7. Statistical Data Analysis-Basic/12. Confidence Interval-Calculation.mp4 14MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/4. Multi-label classification with MLP.mp4 13MB 6. Introduction to Data Visualizations/4. Boxplots-Visualize the Distribution of Continuous Numerical Variables.mp4 13MB 8. Statistical Inference & Relationship Between Variables/1. What is Hypothesis Testing.mp4 13MB 6. Introduction to Data Visualizations/7. Pie Chart.mp4 13MB 13. Miscellaneous Lectures & Information/3. Read Data from a Database.mp4 12MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/8. Start with H20.mp4 12MB 10. Unsupervised Learning in Python/5. KMeans Clustering with Real Data.mp4 12MB 1. Introduction to the Data Science in Python Bootcamp/7. Some Miscellaneous IPython Usage Facts.mp4 12MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/11. H2O Deep Learning For Predictions.mp4 12MB 8. Statistical Inference & Relationship Between Variables/11. GLM Generalized Linear Model.mp4 12MB 3. Introduction to Numpy/5. Numpy for Basic Vector Arithmetric.mp4 12MB 7. Statistical Data Analysis-Basic/7. Common Terms Relating to Descriptive Statistics.mp4 12MB 7. Statistical Data Analysis-Basic/6. Visualize Descriptive Statistics-Boxplots.mp4 11MB 3. Introduction to Numpy/8. Solve Equations with Numpy.mp4 11MB 4. Introduction to Pandas/4. Read in Excel Data Using Pandas.mp4 11MB 11. Supervised Learning/13. Gradient Boosting-regression.mp4 11MB 5. Data Pre-ProcessingWrangling/7. Crosstabulation.mp4 11MB 10. Unsupervised Learning in Python/7. Hierarchical Clustering-theory.mp4 10MB 1. Introduction to the Data Science in Python Bootcamp/5. For Mac Users.mp4 10MB 11. Supervised Learning/9. Support Vector Regression.mp4 10MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/2. Perceptrons for Binary Classification.mp4 10MB 13. Miscellaneous Lectures & Information/4. Naive Bayes Classification.mp4 10MB 7. Statistical Data Analysis-Basic/10. Standard Normal Distribution and Z-scores.mp4 10MB 7. Statistical Data Analysis-Basic/8. Data Distribution- Normal Distribution.mp4 10MB 10. Unsupervised Learning in Python/4. Quantifying KMeans Clustering Performance.mp4 10MB 11. Supervised Learning/14. Voting Classifier.mp4 10MB 8. Statistical Inference & Relationship Between Variables/4. Explore the Relationship Between Two Quantitative Variables.mp4 9MB 2. Introduction to Python Pre-Requisites for Data Science/2. Different Types of Data Used in Statistical & ML Analysis.mp4 9MB 8. Statistical Inference & Relationship Between Variables/10. Polynomial Regression.mp4 9MB 10. Unsupervised Learning in Python/10. Principal Component Analysis (PCA)-Practical Implementation.mp4 9MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/5. Regression with MLP.mp4 9MB 3. Introduction to Numpy/7. Broadcasting with Numpy.mp4 9MB 3. Introduction to Numpy/1. Numpy Introduction.mp4 9MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/3. Getting Started with ANN-binary classification.mp4 8MB 11. Supervised Learning/11. knn-Regression.mp4 8MB 1. Introduction to the Data Science in Python Bootcamp/1. What is Data Science.mp4 8MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/9. Default H2O Deep Learning Algorithm.mp4 8MB 5. Data Pre-ProcessingWrangling/1. Rationale behind this section.mp4 8MB 2. Introduction to Python Pre-Requisites for Data Science/4. Python Data Science Packages To Be Used.mp4 8MB 2. Introduction to Python Pre-Requisites for Data Science/3. Different Types of Data Used Programatically.mp4 8MB 1. Introduction to the Data Science in Python Bootcamp/8. Online iPython Interpreter.mp4 8MB 11. Supervised Learning/7. SVM- Linear Classification.mp4 7MB 11. Supervised Learning/15. Conclusions to Section 11.mp4 7MB 13. Miscellaneous Lectures & Information/2. Read in Data from Online CSV.mp4 7MB 1. Introduction to the Data Science in Python Bootcamp/9. Conclusion to Section 1.mp4 6MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/10. Specify the Activation Function.mp4 6MB 10. Unsupervised Learning in Python/1. Unsupervised Classification- Some Basic Ideas.mp4 6MB 3. Introduction to Numpy/10. Conclusion to Section 3.mp4 6MB 10. Unsupervised Learning in Python/9. Principal Component Analysis (PCA)-Theory.mp4 6MB 6. Introduction to Data Visualizations/9. Conclusions to Section 6.mp4 6MB 10. Unsupervised Learning in Python/11. Conclusions to Section 10.mp4 5MB 4. Introduction to Pandas/7. Conclusion to Section 4.mp4 5MB 5. Data Pre-ProcessingWrangling/13. Conclusion to Section 5.mp4 5MB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/12. Conclusions to Section 12.mp4 5MB 10. Unsupervised Learning in Python/2. KMeans-theory.mp4 5MB 11. Supervised Learning/8. SVM- Non Linear Classification.mp4 5MB 8. Statistical Inference & Relationship Between Variables/13. Conclusions to Section 8.mp4 5MB 2. Introduction to Python Pre-Requisites for Data Science/5. Conclusions to Section 2.mp4 5MB 7. Statistical Data Analysis-Basic/13. Conclusions to Section 7.mp4 4MB 8. Statistical Inference & Relationship Between Variables/8. Conditions of Linear Regression.mp4 3MB 6. Introduction to Data Visualizations/6. Barplot.vtt 22KB 1. Introduction to the Data Science in Python Bootcamp/6. Introduction to the Python Data Science Environment.vtt 17KB 3. Introduction to Numpy/3. Numpy Operations.vtt 15KB 1. Introduction to the Data Science in Python Bootcamp/2. Introduction to the Course & Instructor.vtt 13KB 8. Statistical Inference & Relationship Between Variables/9. Conditions of Linear Regression-Check in Python.vtt 13KB 11. Supervised Learning/5. RF-Classification.vtt 12KB 6. Introduction to Data Visualizations/5. Scatter Plot-Visualize the Relationship Between 2 Continuous Variables.vtt 12KB 6. Introduction to Data Visualizations/8. Line Chart.vtt 12KB 6. Introduction to Data Visualizations/3. Histograms-Visualize the Distribution of Continuous Numerical Variables.vtt 12KB 8. Statistical Inference & Relationship Between Variables/7. Linear Regression-Implementation in Python.vtt 12KB 11. Supervised Learning/1. What is This Section About.vtt 11KB 4. Introduction to Pandas/6. Read in HTML Data.vtt 11KB 8. Statistical Inference & Relationship Between Variables/12. Logistic Regression.vtt 11KB 8. Statistical Inference & Relationship Between Variables/3. Test the Difference Between More Than Two Groups.vtt 11KB 5. Data Pre-ProcessingWrangling/12. Merging and Joining Data Frames.vtt 11KB 11. Supervised Learning/3. Pointers on Evaluating the Accuracy of Classification and Regression Modelling.vtt 10KB 7. Statistical Data Analysis-Basic/5. Grouping & Summarizing Data by Categories.vtt 10KB 1. Introduction to the Data Science in Python Bootcamp/4. Introduction to the Python Data Science Tool.vtt 10KB 11. Supervised Learning/2. Data Preparation for Supervised Learning.vtt 10KB 4. Introduction to Pandas/1. Data Structures in Python.vtt 10KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/1. Theory Behind ANN and DNN.vtt 10KB 8. Statistical Inference & Relationship Between Variables/6. Linear Regression-Theory.vtt 10KB 6. Introduction to Data Visualizations/1. What is Data Visualization.vtt 10KB 11. Supervised Learning/6. RF-Regression.vtt 10KB 5. Data Pre-ProcessingWrangling/8. Reshaping.vtt 10KB 7. Statistical Data Analysis-Basic/1. What is Statistical Data Analysis.vtt 10KB 10. Unsupervised Learning in Python/8. Hierarchical Clustering-practical.vtt 10KB 7. Statistical Data Analysis-Basic/2. Some Pointers on Collecting Data for Statistical Studies.vtt 9KB 13. Miscellaneous Lectures & Information/5. Data Imputation.vtt 9KB 11. Supervised Learning/4. Using Logistic Regression as a Classification Model.vtt 9KB 8. Statistical Inference & Relationship Between Variables/5. Correlation Analysis.vtt 9KB 5. Data Pre-ProcessingWrangling/9. Pivoting.vtt 8KB 5. Data Pre-ProcessingWrangling/6. Basic Data Grouping Based on Qualitative Attributes.vtt 8KB 11. Supervised Learning/10. knn-Classification.vtt 8KB 5. Data Pre-ProcessingWrangling/11. Concatenate.vtt 8KB 13. Miscellaneous Lectures & Information/3. Read Data from a Database.vtt 8KB 5. Data Pre-ProcessingWrangling/5. Subset and Index Data.vtt 8KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/6. MLP with PCA on a Large Dataset.vtt 8KB 7. Statistical Data Analysis-Basic/4. Explore the Quantitative Data Descriptive Statistics.vtt 8KB 10. Unsupervised Learning in Python/3. KMeans-implementation on the iris data.vtt 8KB 8. Statistical Inference & Relationship Between Variables/2. Test the Difference Between Two Groups.vtt 7KB 5. Data Pre-ProcessingWrangling/10. Rank and Sort Data.vtt 7KB 6. Introduction to Data Visualizations/2. Some Theoretical Principles Behind Data Visualization.vtt 7KB 13. Miscellaneous Lectures & Information/4. Naive Bayes Classification.vtt 7KB 3. Introduction to Numpy/9. Numpy for Statistical Operation.vtt 7KB 9. Machine Learning for Data Science/2. What is Machine Learning (ML) About Some Theoretical Pointers.vtt 7KB 3. Introduction to Numpy/4. Matrix Arithmetic and Linear Systems.vtt 6KB 5. Data Pre-ProcessingWrangling/2. Removing NAsNo Values From Our Data.vtt 6KB 9. Machine Learning for Data Science/1. How is Machine Learning Different from Statistical Data Analysis.vtt 6KB 11. Supervised Learning/12. Gradient Boosting-classification.vtt 6KB 3. Introduction to Numpy/2. Create Numpy Arrays.vtt 6KB 7. Statistical Data Analysis-Basic/11. Confidence Interval-Theory.vtt 6KB 8. Statistical Inference & Relationship Between Variables/1. What is Hypothesis Testing.vtt 6KB 4. Introduction to Pandas/3. Read in CSV Data Using Pandas.vtt 6KB 7. Statistical Data Analysis-Basic/12. Confidence Interval-Calculation.vtt 6KB 7. Statistical Data Analysis-Basic/9. Check for Normal Distribution.vtt 6KB 6. Introduction to Data Visualizations/7. Pie Chart.vtt 6KB 7. Statistical Data Analysis-Basic/7. Common Terms Relating to Descriptive Statistics.vtt 6KB 6. Introduction to Data Visualizations/4. Boxplots-Visualize the Distribution of Continuous Numerical Variables.vtt 5KB 7. Statistical Data Analysis-Basic/6. Visualize Descriptive Statistics-Boxplots.vtt 5KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/11. H2O Deep Learning For Predictions.vtt 5KB 8. Statistical Inference & Relationship Between Variables/11. GLM Generalized Linear Model.vtt 5KB 3. Introduction to Numpy/6. Numpy for Basic Matrix Arithmetic.vtt 5KB 10. Unsupervised Learning in Python/7. Hierarchical Clustering-theory.vtt 5KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/4. Multi-label classification with MLP.vtt 5KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/2. Perceptrons for Binary Classification.vtt 5KB 5. Data Pre-ProcessingWrangling/1. Rationale behind this section.vtt 5KB 1. Introduction to the Data Science in Python Bootcamp/7. Some Miscellaneous IPython Usage Facts.vtt 5KB 10. Unsupervised Learning in Python/5. KMeans Clustering with Real Data.vtt 4KB 8. Statistical Inference & Relationship Between Variables/4. Explore the Relationship Between Two Quantitative Variables.vtt 4KB 10. Unsupervised Learning in Python/4. Quantifying KMeans Clustering Performance.vtt 4KB 5. Data Pre-ProcessingWrangling/4. Drop ColumnRow.vtt 4KB 11. Supervised Learning/9. Support Vector Regression.vtt 4KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/8. Start with H20.vtt 4KB 10. Unsupervised Learning in Python/6. How Do We Select the Number of Clusters.vtt 4KB 7. Statistical Data Analysis-Basic/10. Standard Normal Distribution and Z-scores.vtt 4KB 3. Introduction to Numpy/8. Solve Equations with Numpy.vtt 4KB 10. Unsupervised Learning in Python/10. Principal Component Analysis (PCA)-Practical Implementation.vtt 4KB 5. Data Pre-ProcessingWrangling/3. Basic Data Handling Starting with Conditional Data Selection.vtt 4KB 1. Introduction to the Data Science in Python Bootcamp/1. What is Data Science.vtt 4KB 11. Supervised Learning/11. knn-Regression.vtt 4KB 7. Statistical Data Analysis-Basic/8. Data Distribution- Normal Distribution.vtt 4KB 1. Introduction to the Data Science in Python Bootcamp/5. For Mac Users.vtt 4KB 13. Miscellaneous Lectures & Information/2. Read in Data from Online CSV.vtt 4KB 5. Data Pre-ProcessingWrangling/7. Crosstabulation.vtt 4KB 3. Introduction to Numpy/1. Numpy Introduction.vtt 4KB 2. Introduction to Python Pre-Requisites for Data Science/4. Python Data Science Packages To Be Used.vtt 4KB 3. Introduction to Numpy/5. Numpy for Basic Vector Arithmetric.vtt 4KB 3. Introduction to Numpy/7. Broadcasting with Numpy.vtt 4KB 4. Introduction to Pandas/4. Read in Excel Data Using Pandas.vtt 4KB 11. Supervised Learning/14. Voting Classifier.vtt 4KB 8. Statistical Inference & Relationship Between Variables/10. Polynomial Regression.vtt 4KB 11. Supervised Learning/13. Gradient Boosting-regression.vtt 4KB 2. Introduction to Python Pre-Requisites for Data Science/2. Different Types of Data Used in Statistical & ML Analysis.vtt 4KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/5. Regression with MLP.vtt 3KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/3. Getting Started with ANN-binary classification.vtt 3KB 1. Introduction to the Data Science in Python Bootcamp/8. Online iPython Interpreter.vtt 3KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/9. Default H2O Deep Learning Algorithm.vtt 3KB 11. Supervised Learning/7. SVM- Linear Classification.vtt 3KB 4. Introduction to Pandas/5. Reading in JSON Data.vtt 3KB 1. Introduction to the Data Science in Python Bootcamp/9. Conclusion to Section 1.vtt 3KB 2. Introduction to Python Pre-Requisites for Data Science/3. Different Types of Data Used Programatically.vtt 3KB 10. Unsupervised Learning in Python/9. Principal Component Analysis (PCA)-Theory.vtt 3KB 11. Supervised Learning/15. Conclusions to Section 11.vtt 3KB 3. Introduction to Numpy/10. Conclusion to Section 3.vtt 3KB 10. Unsupervised Learning in Python/2. KMeans-theory.vtt 3KB 10. Unsupervised Learning in Python/11. Conclusions to Section 10.vtt 2KB 2. Introduction to Python Pre-Requisites for Data Science/5. Conclusions to Section 2.vtt 2KB 11. Supervised Learning/8. SVM- Non Linear Classification.vtt 2KB 4. Introduction to Pandas/7. Conclusion to Section 4.vtt 2KB 6. Introduction to Data Visualizations/9. Conclusions to Section 6.vtt 2KB 5. Data Pre-ProcessingWrangling/13. Conclusion to Section 5.vtt 2KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/10. Specify the Activation Function.vtt 2KB 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/12. Conclusions to Section 12.vtt 2KB 8. Statistical Inference & Relationship Between Variables/13. Conclusions to Section 8.vtt 2KB 8. Statistical Inference & Relationship Between Variables/8. Conditions of Linear Regression.vtt 2KB 10. Unsupervised Learning in Python/1. Unsupervised Classification- Some Basic Ideas.vtt 2KB 7. Statistical Data Analysis-Basic/13. Conclusions to Section 7.vtt 2KB 7. Statistical Data Analysis-Basic/3. Some Pointers on Exploring Quantitative Data.html 517B 2. Introduction to Python Pre-Requisites for Data Science/1. Rationale Behind This Section.html 429B 4. Introduction to Pandas/2. Read in Data.html 246B 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/7. Start With Deep Neural Network (DNN).html 229B 11. Supervised Learning/16. Section 11 Quiz.html 163B 12. Artificial Neural Networks (ANN) and Deep Learning (DL)/13. Section 12 Quiz.html 163B 3. Introduction to Numpy/11. Section 3 Quiz.html 163B 8. Statistical Inference & Relationship Between Variables/14. Section 8 Quiz.html 163B 13. Miscellaneous Lectures & Information/1. Data For This Section.html 137B [Tutorialsplanet.NET].url 128B 1. Introduction to the Data Science in Python Bootcamp/3. Data For the Course.html 98B