[] Udemy - Neural Networks (ANN) using Keras and TensorFlow in Python 收录时间:2021-05-03 22:00:53 文件大小:3GB 下载次数:1 最近下载:2021-05-03 22:00:53 磁力链接: magnet:?xt=urn:btih:14d6d6ef2db6317ba959d356df9a36b2e4a3ef7a 立即下载 复制链接 文件列表 11. Python - Solving a Regression problem using ANN/1. Building Neural Network for Regression Problem.mp4 156MB 13. Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4 152MB 4. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4 122MB 15. Add-on 1 Data Preprocessing/13. Bi-variate analysis and Variable transformation.mp4 100MB 16. Add-on 2 Classic ML models - Linear Regression/3. Assessing accuracy of predicted coefficients.mp4 92MB 12. Complex ANN Architectures using Functional API/1. Using Functional API for complex architectures.mp4 92MB 3. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.mp4 87MB 10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.mp4 82MB 10. Python - Building and training the Model/2. Building the Neural Network using Keras.mp4 79MB 15. Add-on 1 Data Preprocessing/18. Correlation Analysis.mp4 72MB 15. Add-on 1 Data Preprocessing/9. Outlier Treatment in Python.mp4 70MB 10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.mp4 70MB 16. Add-on 2 Classic ML models - Linear Regression/9. Multiple Linear Regression in Python.mp4 70MB 15. Add-on 1 Data Preprocessing/3. The Dataset and the Data Dictionary.mp4 69MB 2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp4 65MB 2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp4 64MB 16. Add-on 2 Classic ML models - Linear Regression/5. Simple Linear Regression in Python.mp4 63MB 5. Important concepts Common Interview questions/1. Some Important Concepts.mp4 62MB 15. Add-on 1 Data Preprocessing/7. EDD in Python.mp4 62MB 14. Hyperparameter Tuning/1. Hyperparameter Tuning.mp4 61MB 4. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4 60MB 2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp4 60MB 9. Python - Dataset for classification problem/1. Dataset for classification.mp4 56MB 16. Add-on 2 Classic ML models - Linear Regression/7. The F - statistic.mp4 56MB 15. Add-on 1 Data Preprocessing/19. Correlation Analysis in Python.mp4 55MB 2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.mp4 47MB 6. Standard Model Parameters/1. Hyperparameters.mp4 45MB 16. Add-on 2 Classic ML models - Linear Regression/12. Test train split in Python.mp4 45MB 3. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.mp4 45MB 9. Python - Dataset for classification problem/2. Normalization and Test-Train split.mp4 44MB 15. Add-on 1 Data Preprocessing/14. Variable transformation and deletion in Python.mp4 44MB 2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp4 44MB 16. Add-on 2 Classic ML models - Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp4 44MB 16. Add-on 2 Classic ML models - Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp4 43MB 16. Add-on 2 Classic ML models - Linear Regression/10. Test-train split.mp4 42MB 2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp4 41MB 4. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4 40MB 2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp4 40MB 15. Add-on 1 Data Preprocessing/16. Dummy variable creation Handling qualitative data.mp4 37MB 3. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.mp4 35MB 16. Add-on 2 Classic ML models - Linear Regression/6. Multiple Linear Regression.mp4 34MB 1. Introduction/2. Introduction to Neural Networks and Course flow.mp4 29MB 15. Add-on 1 Data Preprocessing/5. Importing Data in Python.mp4 28MB 15. Add-on 1 Data Preprocessing/17. Dummy variable creation in Python.mp4 27MB 16. Add-on 2 Classic ML models - Linear Regression/11. Bias Variance trade-off.mp4 25MB 15. Add-on 1 Data Preprocessing/10. Missing Value Imputation.mp4 25MB 15. Add-on 1 Data Preprocessing/8. Outlier Treatment.mp4 24MB 15. Add-on 1 Data Preprocessing/6. Univariate analysis and EDD.mp4 24MB 15. Add-on 1 Data Preprocessing/11. Missing Value Imputation in Python.mp4 23MB 16. Add-on 2 Classic ML models - Linear Regression/8. Interpreting results of Categorical variables.mp4 23MB 15. Add-on 1 Data Preprocessing/1. Gathering Business Knowledge.mp4 22MB 1. Introduction/1. Welcome to the course.mp4 21MB 15. Add-on 1 Data Preprocessing/2. Data Exploration.mp4 21MB 15. Add-on 1 Data Preprocessing/15. Non-usable variables.mp4 20MB 8. Tensorflow and Keras/2. Installing Tensorflow and Keras.mp4 20MB 15. Add-on 1 Data Preprocessing/12. Seasonality in Data.mp4 17MB 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4 16MB 8. Tensorflow and Keras/1. Keras and Tensorflow.mp4 15MB 2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp4 13MB 10. Python - Building and training the Model/1. Different ways to create ANN using Keras.mp4 11MB 1. Introduction/3.1 Files_ANN_Py.zip 11MB 16. Add-on 2 Classic ML models - Linear Regression/1. The Problem Statement.mp4 9MB 15. Add-on 1 Data Preprocessing/4.1 Files_linear_py.zip 9MB 4. Neural Networks - Stacking cells to create network/3. Back Propagation.srt 23KB 11. Python - Solving a Regression problem using ANN/1. Building Neural Network for Regression Problem.srt 22KB 13. Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.srt 19KB 15. Add-on 1 Data Preprocessing/13. Bi-variate analysis and Variable transformation.srt 18KB 2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.srt 17KB 2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.srt 16KB 16. Add-on 2 Classic ML models - Linear Regression/3. Assessing accuracy of predicted coefficients.srt 16KB 3. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.srt 15KB 5. Important concepts Common Interview questions/1. Some Important Concepts.srt 13KB 15. Add-on 1 Data Preprocessing/9. Outlier Treatment in Python.srt 13KB 16. Add-on 2 Classic ML models - Linear Regression/9. Multiple Linear Regression in Python.srt 12KB 2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.srt 12KB 10. Python - Building and training the Model/2. Building the Neural Network using Keras.srt 12KB 4. Neural Networks - Stacking cells to create network/2. Gradient Descent.srt 12KB 12. Complex ANN Architectures using Functional API/1. Using Functional API for complex architectures.srt 12KB 16. Add-on 2 Classic ML models - Linear Regression/5. Simple Linear Regression in Python.srt 11KB 15. Add-on 1 Data Preprocessing/18. Correlation Analysis.srt 11KB 2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.srt 10KB 15. Add-on 1 Data Preprocessing/7. EDD in Python.srt 10KB 16. Add-on 2 Classic ML models - Linear Regression/10. Test-train split.srt 10KB 16. Add-on 2 Classic ML models - Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.srt 10KB 3. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.srt 10KB 10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.srt 10KB 4. Neural Networks - Stacking cells to create network/1. Basic Terminologies.srt 10KB 14. Hyperparameter Tuning/1. Hyperparameter Tuning.srt 9KB 2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.srt 9KB 10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.srt 9KB 16. Add-on 2 Classic ML models - Linear Regression/7. The F - statistic.srt 9KB 6. Standard Model Parameters/1. Hyperparameters.srt 9KB 2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.srt 8KB 16. Add-on 2 Classic ML models - Linear Regression/12. Test train split in Python.srt 8KB 16. Add-on 2 Classic ML models - Linear Regression/4. Assessing Model Accuracy RSE and R squared.srt 8KB 3. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.srt 8KB 15. Add-on 1 Data Preprocessing/3. The Dataset and the Data Dictionary.srt 8KB 15. Add-on 1 Data Preprocessing/14. Variable transformation and deletion in Python.srt 8KB 2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.srt 8KB 9. Python - Dataset for classification problem/1. Dataset for classification.srt 7KB 15. Add-on 1 Data Preprocessing/19. Correlation Analysis in Python.srt 7KB 16. Add-on 2 Classic ML models - Linear Regression/11. Bias Variance trade-off.srt 6KB 9. Python - Dataset for classification problem/2. Normalization and Test-Train split.srt 6KB 16. Add-on 2 Classic ML models - Linear Regression/6. Multiple Linear Regression.srt 6KB 15. Add-on 1 Data Preprocessing/5. Importing Data in Python.srt 6KB 15. Add-on 1 Data Preprocessing/17. Dummy variable creation in Python.srt 6KB 15. Add-on 1 Data Preprocessing/15. Non-usable variables.srt 5KB 16. Add-on 2 Classic ML models - Linear Regression/8. Interpreting results of Categorical variables.srt 5KB 15. Add-on 1 Data Preprocessing/16. Dummy variable creation Handling qualitative data.srt 5KB 1. Introduction/2. Introduction to Neural Networks and Course flow.srt 5KB 15. Add-on 1 Data Preprocessing/8. Outlier Treatment.srt 4KB 15. Add-on 1 Data Preprocessing/10. Missing Value Imputation.srt 4KB 15. Add-on 1 Data Preprocessing/11. Missing Value Imputation in Python.srt 4KB 2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.srt 4KB 15. Add-on 1 Data Preprocessing/1. Gathering Business Knowledge.srt 4KB 8. Tensorflow and Keras/2. Installing Tensorflow and Keras.srt 4KB 15. Add-on 1 Data Preprocessing/12. Seasonality in Data.srt 4KB 15. Add-on 1 Data Preprocessing/2. Data Exploration.srt 4KB 8. Tensorflow and Keras/1. Keras and Tensorflow.srt 4KB 15. Add-on 1 Data Preprocessing/6. Univariate analysis and EDD.srt 3KB 1. Introduction/1. Welcome to the course.srt 3KB 2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.srt 3KB 10. Python - Building and training the Model/1. Different ways to create ANN using Keras.srt 2KB 16. Add-on 2 Classic ML models - Linear Regression/1. The Problem Statement.srt 2KB 18. Bonus Section/1. Congratulations & About your certificate.html 2KB 17. Practice Assignment/1. Neural Networks Classification Assignment.html 173B 5. Important concepts Common Interview questions/2. Quiz.html 169B 7. Practice Test/1. Test your conceptual understanding.html 169B 15. Add-on 1 Data Preprocessing/4. Add-on Resources.html 131B 1. Introduction/3. Course resources.html 117B 0. Websites you may like/[DesireCourse.Net].url 51B 1. Introduction/[DesireCourse.Net].url 51B 10. Python - Building and training the Model/[DesireCourse.Net].url 51B 14. Hyperparameter Tuning/[DesireCourse.Net].url 51B 17. Practice Assignment/[DesireCourse.Net].url 51B 5. Important concepts Common Interview questions/[DesireCourse.Net].url 51B [DesireCourse.Net].url 51B 0. Websites you may like/[CourseClub.Me].url 48B 1. Introduction/[CourseClub.Me].url 48B 10. Python - Building and training the Model/[CourseClub.Me].url 48B 14. Hyperparameter Tuning/[CourseClub.Me].url 48B 17. Practice Assignment/[CourseClub.Me].url 48B 5. Important concepts Common Interview questions/[CourseClub.Me].url 48B [CourseClub.Me].url 48B