[] Udemy - Deep Learning A-Z™ Hands-On Artificial Neural Networks
- 收录时间:2019-05-15 07:36:11
- 文件大小:3GB
- 下载次数:72
- 最近下载:2021-01-08 05:50:58
- 磁力链接:
-
文件列表
- 1. Welcome to the course/1. Updates on Udemy Reviews.mp4 61MB
- 6. Evaluating, Improving and Tuning the ANN/1. Evaluating the ANN.mp4 56MB
- 14. RNN Intuition/6. Practical intuition.mp4 53MB
- 26. Building an AutoEncoder/16. THANK YOU bonus video.mp4 52MB
- 6. Evaluating, Improving and Tuning the ANN/3. Tuning the ANN.mp4 51MB
- 26. Building an AutoEncoder/8. Building an AutoEncoder - Step 4.mp4 50MB
- 10. Building a CNN/12. Building a CNN - Step 9.mp4 47MB
- 14. RNN Intuition/5. LSTMs.mp4 46MB
- 4. Building an ANN/6. Building an ANN - Step 2.mp4 46MB
- 23. Building a Boltzmann Machine/8. Building a Boltzmann Machine - Step 4.mp4 46MB
- 18. SOMs Intuition/8. Reading an Advanced SOM.mp4 43MB
- 23. Building a Boltzmann Machine/17. Building a Boltzmann Machine - Step 13.mp4 43MB
- 9. CNN Intuition/8. Step 4 - Full Connection.mp4 43MB
- 30. Classification Template/5. Logistic Regression Implementation - Step 5.mp4 42MB
- 11. Homework - What's that pet/2. Homework Solution.mp4 41MB
- 23. Building a Boltzmann Machine/18. Building a Boltzmann Machine - Step 14.mp4 40MB
- 9. CNN Intuition/6. Step 2 - Pooling.mp4 40MB
- 15. Building a RNN/15. Building a RNN - Step 13.mp4 40MB
- 26. Building an AutoEncoder/10. Building an AutoEncoder - Step 6.mp4 38MB
- 5. Homework Challenge - Should we say goodbye to that customer/2. Homework Solution.mp4 38MB
- 14. RNN Intuition/3. The idea behind Recurrent Neural Networks.mp4 37MB
- 15. Building a RNN/6. Building a RNN - Step 4.mp4 37MB
- 19. Building a SOM/4. Building a SOM - Step 3.mp4 36MB
- 20. Mega Case Study/3. Mega Case Study - Step 3.mp4 35MB
- 26. Building an AutoEncoder/12. Building an AutoEncoder - Step 8.mp4 34MB
- 26. Building an AutoEncoder/11. Building an AutoEncoder - Step 7.mp4 34MB
- 9. CNN Intuition/10. Softmax & Cross-Entropy.mp4 33MB
- 22. Boltzmann Machine Intuition/5. Restricted Boltzmann Machine.mp4 32MB
- 26. Building an AutoEncoder/13. Building an AutoEncoder - Step 9.mp4 32MB
- 1. Welcome to the course/2. What is Deep Learning.mp4 31MB
- 9. CNN Intuition/4. Step 1 - Convolution Operation.mp4 31MB
- 23. Building a Boltzmann Machine/16. Building a Boltzmann Machine - Step 12.mp4 31MB
- 19. Building a SOM/2. Building a SOM - Step 1.mp4 31MB
- 3. ANN Intuition/2. The Neuron.mp4 30MB
- 4. Building an ANN/9. Building an ANN - Step 5.mp4 30MB
- 9. CNN Intuition/3. What are convolutional neural networks.mp4 30MB
- 15. Building a RNN/13. Building a RNN - Step 11.mp4 29MB
- 23. Building a Boltzmann Machine/12. Building a Boltzmann Machine - Step 8.mp4 29MB
- 28. Regression & Classification Intuition/5. Logistic Regression Intuition.mp4 29MB
- 14. RNN Intuition/4. The Vanishing Gradient Problem.mp4 29MB
- 29. Data Preprocessing Template/4. Data Preprocessing - Step 4.mp4 29MB
- 19. Building a SOM/5. Building a SOM - Step 4.mp4 29MB
- 26. Building an AutoEncoder/15. Building an AutoEncoder - Step 11.mp4 28MB
- 26. Building an AutoEncoder/5. Building an AutoEncoder - Step 2.mp4 28MB
- 10. Building a CNN/7. Building a CNN - Step 4.mp4 27MB
- 9. CNN Intuition/9. Summary.vtt 27MB
- 3. ANN Intuition/5. How do Neural Networks learn.mp4 27MB
- 15. Building a RNN/7. Building a RNN - Step 5.mp4 26MB
- 26. Building an AutoEncoder/4. Building an AutoEncoder - Step 1.mp4 26MB
- 18. SOMs Intuition/5. How do Self-Organizing Maps Learn (Part 1).mp4 25MB
- 22. Boltzmann Machine Intuition/2. Boltzmann Machine.mp4 25MB
- 22. Boltzmann Machine Intuition/6. Contrastive Divergence.mp4 25MB
- 23. Building a Boltzmann Machine/14. Building a Boltzmann Machine - Step 10.mp4 24MB
- 4. Building an ANN/5. Building an ANN - Step 1.mp4 24MB
- 3. ANN Intuition/4. How do Neural Networks work.mp4 24MB
- 23. Building a Boltzmann Machine/11. Building a Boltzmann Machine - Step 7.mp4 23MB
- 29. Data Preprocessing Template/5. Data Preprocessing - Step 5.mp4 23MB
- 29. Data Preprocessing Template/6. Data Preprocessing - Step 6.mp4 23MB
- 20. Mega Case Study/4. Mega Case Study - Step 4.mp4 23MB
- 29. Data Preprocessing Template/3. Data Preprocessing - Step 3.mp4 22MB
- 15. Building a RNN/17. Building a RNN - Step 15.mp4 22MB
- 25. AutoEncoders Intuition/2. Auto Encoders.mp4 22MB
- 15. Building a RNN/16. Building a RNN - Step 14.mp4 22MB
- 18. SOMs Intuition/4. K-Means Clustering (Refresher).mp4 21MB
- 23. Building a Boltzmann Machine/5. Building a Boltzmann Machine - Step 1.mp4 21MB
- 23. Building a Boltzmann Machine/3. Building a Boltzmann Machine - Introduction.mp4 21MB
- 23. Building a Boltzmann Machine/6. Building a Boltzmann Machine - Step 2.mp4 21MB
- 15. Building a RNN/9. Building a RNN - Step 7.mp4 21MB
- 10. Building a CNN/13. Building a CNN - Step 10.mp4 21MB
- 1. Welcome to the course/3. Installing Python.mp4 20MB
- 26. Building an AutoEncoder/6. Building an AutoEncoder - Step 3.mp4 20MB
- 6. Evaluating, Improving and Tuning the ANN/2. Improving the ANN.mp4 20MB
- 19. Building a SOM/3. Building a SOM - Step 2.mp4 19MB
- 10. Building a CNN/4. Building a CNN - Step 1.mp4 19MB
- 23. Building a Boltzmann Machine/10. Building a Boltzmann Machine - Step 6.mp4 19MB
- 3. ANN Intuition/6. Gradient Descent.mp4 19MB
- 18. SOMs Intuition/10. EXTRA K-means Clustering (part 3).mp4 18MB
- 22. Boltzmann Machine Intuition/4. Editing Wikipedia - Our Contribution to the World.mp4 18MB
- 23. Building a Boltzmann Machine/7. Building a Boltzmann Machine - Step 3.mp4 18MB
- 4. Building an ANN/12. Building an ANN - Step 8.mp4 18MB
- 4. Building an ANN/14. Building an ANN - Step 10.mp4 17MB
- 4. Building an ANN/13. Building an ANN - Step 9.mp4 17MB
- 3. ANN Intuition/7. Stochastic Gradient Descent.mp4 17MB
- 23. Building a Boltzmann Machine/15. Building a Boltzmann Machine - Step 11.mp4 17MB
- 4. Building an ANN/3. Business Problem Description.mp4 16MB
- 18. SOMs Intuition/2. How do Self-Organizing Maps Work.mp4 16MB
- 15. Building a RNN/5. Building a RNN - Step 3.mp4 16MB
- 29. Data Preprocessing Template/2. Data Preprocessing - Step 2.mp4 16MB
- 22. Boltzmann Machine Intuition/3. Energy-Based Models (EBM).mp4 16MB
- 15. Building a RNN/4. Building a RNN - Step 2.mp4 16MB
- 18. SOMs Intuition/6. How do Self-Organizing Maps Learn (Part 2).mp4 15MB
- 23. Building a Boltzmann Machine/13. Building a Boltzmann Machine - Step 9.mp4 15MB
- 3. ANN Intuition/3. The Activation Function.mp4 15MB
- 9. CNN Intuition/5. Step 1(b) - ReLU Layer.mp4 14MB
- 15. Building a RNN/3. Building a RNN - Step 1.mp4 14MB
- 15. Building a RNN/14. Building a RNN - Step 12.mp4 13MB
- 15. Building a RNN/10. Building a RNN - Step 8.mp4 13MB
- 29. Data Preprocessing Template/1. Data Preprocessing - Step 1.mp4 13MB
- 18. SOMs Intuition/7. Live SOM example.mp4 13MB
- 10. Building a CNN/10. Building a CNN - Step 7.mp4 13MB
- 18. SOMs Intuition/9. EXTRA K-means Clustering (part 2).mp4 12MB
- 30. Classification Template/1. Logistic Regression Implementation - Step 1.mp4 12MB
- 26. Building an AutoEncoder/9. Building an AutoEncoder - Step 5.mp4 12MB
- 30. Classification Template/6. Classification Template.mp4 12MB
- 25. AutoEncoders Intuition/6. Sparse Autoencoders.mp4 12MB
- 15. Building a RNN/12. Building a RNN - Step 10.mp4 11MB
- 26. Building an AutoEncoder/14. Building an AutoEncoder - Step 10.mp4 11MB
- 23. Building a Boltzmann Machine/9. Building a Boltzmann Machine - Step 5.mp4 11MB
- 25. AutoEncoders Intuition/4. Training an Auto Encoder.mp4 11MB
- 3. ANN Intuition/8. Backpropagation.mp4 11MB
- 22. Boltzmann Machine Intuition/7. Deep Belief Networks.mp4 10MB
- 10. Building a CNN/8. Building a CNN - Step 5.mp4 10MB
- 10. Building a CNN/9. Building a CNN - Step 6.mp4 10MB
- 20. Mega Case Study/2. Mega Case Study - Step 2.mp4 10MB
- 30. Classification Template/4. Logistic Regression Implementation - Step 4.mp4 10MB
- 28. Regression & Classification Intuition/2. Simple Linear Regression Intuition - Step 1.mp4 9MB
- 4. Building an ANN/11. Building an ANN - Step 7.mp4 9MB
- 4. Building an ANN/7. Building an ANN - Step 3.mp4 8MB
- 15. Building a RNN/11. Building a RNN - Step 9.mp4 8MB
- 29. Data Preprocessing Template/7. Data Preprocessing Template.mp4 8MB
- 30. Classification Template/2. Logistic Regression Implementation - Step 2.mp4 8MB
- 9. CNN Intuition/9. Summary.mp4 8MB
- 10. Building a CNN/3. Introduction to CNNs.mp4 8MB
- 14. RNN Intuition/7. EXTRA LSTM Variations.mp4 7MB
- 4. Building an ANN/10. Building an ANN - Step 6.mp4 7MB
- 4. Building an ANN/3. Business Problem Description.vtt 7MB
- 10. Building a CNN/11. Building a CNN - Step 8.mp4 7MB
- 15. Building a RNN/8. Building a RNN - Step 6.mp4 7MB
- 15. Building a RNN/1. How to get the dataset.mp4 7MB
- 10. Building a CNN/1. How to get the dataset.mp4 6MB
- 19. Building a SOM/1. How to get the dataset.mp4 6MB
- 23. Building a Boltzmann Machine/1. How to get the dataset.mp4 6MB
- 26. Building an AutoEncoder/1. How to get the dataset.mp4 6MB
- 4. Building an ANN/2. How to get the dataset.mp4 6MB
- 1. Welcome to the course/4. How to get the dataset.mp4 6MB
- 25. AutoEncoders Intuition/5. Overcomplete hidden layers.mp4 6MB
- 4. Building an ANN/8. Building an ANN - Step 4.mp4 6MB
- 30. Classification Template/3. Logistic Regression Implementation - Step 3.mp4 6MB
- 10. Building a CNN/5. Building a CNN - Step 2.mp4 6MB
- 28. Regression & Classification Intuition/3. Simple Linear Regression Intuition - Step 2.mp4 5MB
- 9. CNN Intuition/2. Plan of attack.mp4 5MB
- 22. Boltzmann Machine Intuition/8. Deep Boltzmann Machines.mp4 5MB
- 3. ANN Intuition/1. Plan of Attack.mp4 5MB
- 25. AutoEncoders Intuition/7. Denoising Autoencoders.mp4 5MB
- 18. SOMs Intuition/1. Plan of attack.mp4 4MB
- 25. AutoEncoders Intuition/8. Contractive Autoencoders.mp4 4MB
- 20. Mega Case Study/1. Mega Case Study - Step 1.mp4 4MB
- 14. RNN Intuition/2. Plan of attack.mp4 4MB
- 25. AutoEncoders Intuition/9. Stacked Autoencoders.mp4 4MB
- 18. SOMs Intuition/3. Why revisit K-Means.mp4 3MB
- 25. AutoEncoders Intuition/1. Plan of attack.mp4 3MB
- 9. CNN Intuition/7. Step 3 - Flattening.mp4 3MB
- 22. Boltzmann Machine Intuition/1. Plan of attack.mp4 3MB
- 25. AutoEncoders Intuition/10. Deep Autoencoders.mp4 3MB
- 10. Building a CNN/6. Building a CNN - Step 3.mp4 2MB
- 25. AutoEncoders Intuition/3. A Note on Biases.mp4 2MB
- 28. Regression & Classification Intuition/4. Multiple Linear Regression Intuition.mp4 2MB
- 23. Building a Boltzmann Machine/8. Building a Boltzmann Machine - Step 4.vtt 38KB
- 26. Building an AutoEncoder/8. Building an AutoEncoder - Step 4.vtt 37KB
- 6. Evaluating, Improving and Tuning the ANN/1. Evaluating the ANN.vtt 36KB
- 10. Building a CNN/12. Building a CNN - Step 9.vtt 36KB
- 14. RNN Intuition/5. LSTMs.vtt 35KB
- 9. CNN Intuition/8. Step 4 - Full Connection.vtt 35KB
- 22. Boltzmann Machine Intuition/5. Restricted Boltzmann Machine.vtt 34KB
- 6. Evaluating, Improving and Tuning the ANN/3. Tuning the ANN.vtt 33KB
- 4. Building an ANN/6. Building an ANN - Step 2.vtt 32KB
- 23. Building a Boltzmann Machine/17. Building a Boltzmann Machine - Step 13.vtt 32KB
- 3. ANN Intuition/2. The Neuron.vtt 32KB
- 30. Classification Template/5. Logistic Regression Implementation - Step 5.vtt 32KB
- 19. Building a SOM/4. Building a SOM - Step 3.vtt 32KB
- 26. Building an AutoEncoder/10. Building an AutoEncoder - Step 6.vtt 31KB
- 9. CNN Intuition/10. Softmax & Cross-Entropy.vtt 31KB
- 23. Building a Boltzmann Machine/18. Building a Boltzmann Machine - Step 14.vtt 31KB
- 28. Regression & Classification Intuition/5. Logistic Regression Intuition.vtt 29KB
- 9. CNN Intuition/4. Step 1 - Convolution Operation.vtt 29KB
- 14. RNN Intuition/3. The idea behind Recurrent Neural Networks.vtt 29KB
- 22. Boltzmann Machine Intuition/6. Contrastive Divergence.vtt 28KB
- 26. Building an AutoEncoder/12. Building an AutoEncoder - Step 8.vtt 28KB
- 9. CNN Intuition/3. What are convolutional neural networks.vtt 28KB
- 18. SOMs Intuition/4. K-Means Clustering (Refresher).vtt 28KB
- 15. Building a RNN/15. Building a RNN - Step 13.vtt 28KB
- 11. Homework - What's that pet/2. Homework Solution.vtt 28KB
- 22. Boltzmann Machine Intuition/2. Boltzmann Machine.vtt 27KB
- 14. RNN Intuition/4. The Vanishing Gradient Problem.vtt 27KB
- 18. SOMs Intuition/5. How do Self-Organizing Maps Learn (Part 1).vtt 26KB
- 18. SOMs Intuition/8. Reading an Advanced SOM.vtt 26KB
- 9. CNN Intuition/6. Step 2 - Pooling.vtt 26KB
- 14. RNN Intuition/6. Practical intuition.vtt 25KB
- 20. Mega Case Study/3. Mega Case Study - Step 3.vtt 25KB
- 26. Building an AutoEncoder/11. Building an AutoEncoder - Step 7.vtt 25KB
- 3. ANN Intuition/5. How do Neural Networks learn.vtt 25KB
- 26. Building an AutoEncoder/13. Building an AutoEncoder - Step 9.vtt 25KB
- 10. Building a CNN/7. Building a CNN - Step 4.vtt 24KB
- 4. Building an ANN/5. Building an ANN - Step 1.vtt 24KB
- 19. Building a SOM/2. Building a SOM - Step 1.vtt 24KB
- 15. Building a RNN/6. Building a RNN - Step 4.vtt 23KB
- 4. Building an ANN/9. Building an ANN - Step 5.vtt 23KB
- 18. SOMs Intuition/10. EXTRA K-means Clustering (part 3).vtt 23KB
- 23. Building a Boltzmann Machine/12. Building a Boltzmann Machine - Step 8.vtt 22KB
- 23. Building a Boltzmann Machine/16. Building a Boltzmann Machine - Step 12.vtt 22KB
- 29. Data Preprocessing Template/4. Data Preprocessing - Step 4.vtt 22KB
- 26. Building an AutoEncoder/5. Building an AutoEncoder - Step 2.vtt 22KB
- 3. ANN Intuition/4. How do Neural Networks work.vtt 22KB
- 26. Building an AutoEncoder/15. Building an AutoEncoder - Step 11.vtt 22KB
- 26. Building an AutoEncoder/4. Building an AutoEncoder - Step 1.vtt 21KB
- 23. Building a Boltzmann Machine/14. Building a Boltzmann Machine - Step 10.vtt 20KB
- 1. Welcome to the course/2. What is Deep Learning.vtt 20KB
- 22. Boltzmann Machine Intuition/3. Energy-Based Models (EBM).vtt 20KB
- 25. AutoEncoders Intuition/2. Auto Encoders.vtt 19KB
- 19. Building a SOM/5. Building a SOM - Step 4.vtt 19KB
- 20. Mega Case Study/4. Mega Case Study - Step 4.vtt 19KB
- 29. Data Preprocessing Template/6. Data Preprocessing - Step 6.vtt 19KB
- 29. Data Preprocessing Template/5. Data Preprocessing - Step 5.vtt 19KB
- 23. Building a Boltzmann Machine/11. Building a Boltzmann Machine - Step 7.vtt 19KB
- 23. Building a Boltzmann Machine/3. Building a Boltzmann Machine - Introduction.vtt 19KB
- 15. Building a RNN/7. Building a RNN - Step 5.vtt 18KB
- 5. Homework Challenge - Should we say goodbye to that customer/2. Homework Solution.vtt 18KB
- 29. Data Preprocessing Template/3. Data Preprocessing - Step 3.vtt 18KB
- 19. Building a SOM/3. Building a SOM - Step 2.vtt 17KB
- 3. ANN Intuition/6. Gradient Descent.vtt 17KB
- 10. Building a CNN/4. Building a CNN - Step 1.vtt 17KB
- 15. Building a RNN/13. Building a RNN - Step 11.vtt 17KB
- 18. SOMs Intuition/6. How do Self-Organizing Maps Learn (Part 2).vtt 17KB
- 23. Building a Boltzmann Machine/5. Building a Boltzmann Machine - Step 1.vtt 17KB
- 23. Building a Boltzmann Machine/6. Building a Boltzmann Machine - Step 2.vtt 17KB
- 18. SOMs Intuition/2. How do Self-Organizing Maps Work.vtt 17KB
- 15. Building a RNN/17. Building a RNN - Step 15.vtt 16KB
- 3. ANN Intuition/7. Stochastic Gradient Descent.vtt 16KB
- 10. Building a CNN/13. Building a CNN - Step 10.vtt 16KB
- 18. SOMs Intuition/9. EXTRA K-means Clustering (part 2).vtt 15KB
- 3. ANN Intuition/3. The Activation Function.vtt 15KB
- 23. Building a Boltzmann Machine/7. Building a Boltzmann Machine - Step 3.vtt 15KB
- 1. Welcome to the course/3. Installing Python.vtt 15KB
- 26. Building an AutoEncoder/6. Building an AutoEncoder - Step 3.vtt 15KB
- 23. Building a Boltzmann Machine/10. Building a Boltzmann Machine - Step 6.vtt 14KB
- 15. Building a RNN/9. Building a RNN - Step 7.vtt 14KB
- 29. Data Preprocessing Template/1. Data Preprocessing - Step 1.vtt 14KB
- 29. Data Preprocessing Template/2. Data Preprocessing - Step 2.vtt 14KB
- 4. Building an ANN/12. Building an ANN - Step 8.vtt 14KB
- 15. Building a RNN/16. Building a RNN - Step 14.vtt 13KB
- 4. Building an ANN/14. Building an ANN - Step 10.vtt 13KB
- 6. Evaluating, Improving and Tuning the ANN/2. Improving the ANN.vtt 12KB
- 23. Building a Boltzmann Machine/13. Building a Boltzmann Machine - Step 9.vtt 12KB
- 25. AutoEncoders Intuition/4. Training an Auto Encoder.vtt 12KB
- 23. Building a Boltzmann Machine/15. Building a Boltzmann Machine - Step 11.vtt 12KB
- 15. Building a RNN/4. Building a RNN - Step 2.vtt 12KB
- 9. CNN Intuition/5. Step 1(b) - ReLU Layer.vtt 11KB
- 10. Building a CNN/10. Building a CNN - Step 7.vtt 11KB
- 25. AutoEncoders Intuition/6. Sparse Autoencoders.vtt 11KB
- 15. Building a RNN/3. Building a RNN - Step 1.vtt 11KB
- 4. Building an ANN/13. Building an ANN - Step 9.vtt 11KB
- 15. Building a RNN/10. Building a RNN - Step 8.vtt 10KB
- 28. Regression & Classification Intuition/2. Simple Linear Regression Intuition - Step 1.vtt 10KB
- 22. Boltzmann Machine Intuition/7. Deep Belief Networks.vtt 10KB
- 15. Building a RNN/5. Building a RNN - Step 3.vtt 10KB
- 23. Building a Boltzmann Machine/9. Building a Boltzmann Machine - Step 5.vtt 9KB
- 10. Building a CNN/9. Building a CNN - Step 6.vtt 9KB
- 3. ANN Intuition/8. Backpropagation.vtt 9KB
- 26. Building an AutoEncoder/9. Building an AutoEncoder - Step 5.vtt 9KB
- 10. Building a CNN/8. Building a CNN - Step 5.vtt 9KB
- 30. Classification Template/1. Logistic Regression Implementation - Step 1.vtt 9KB
- 15. Building a RNN/14. Building a RNN - Step 12.vtt 9KB
- 26. Building an AutoEncoder/14. Building an AutoEncoder - Step 10.vtt 8KB
- 15. Building a RNN/12. Building a RNN - Step 10.vtt 8KB
- 18. SOMs Intuition/7. Live SOM example.vtt 8KB
- 20. Mega Case Study/2. Mega Case Study - Step 2.vtt 8KB
- 10. Building a CNN/3. Introduction to CNNs.vtt 8KB
- 30. Classification Template/6. Classification Template.vtt 7KB
- 30. Classification Template/4. Logistic Regression Implementation - Step 4.vtt 7KB
- 25. AutoEncoders Intuition/5. Overcomplete hidden layers.vtt 7KB
- 4. Building an ANN/11. Building an ANN - Step 7.vtt 7KB
- 29. Data Preprocessing Template/7. Data Preprocessing Template.vtt 7KB
- 9. CNN Intuition/2. Plan of attack.vtt 7KB
- 14. RNN Intuition/7. EXTRA LSTM Variations.vtt 6KB
- 22. Boltzmann Machine Intuition/4. Editing Wikipedia - Our Contribution to the World.vtt 6KB
- 20. Mega Case Study/1. Mega Case Study - Step 1.vtt 6KB
- 18. SOMs Intuition/1. Plan of attack.vtt 6KB
- 15. Building a RNN/11. Building a RNN - Step 9.vtt 6KB
- 4. Building an ANN/7. Building an ANN - Step 3.vtt 6KB
- 1. Welcome to the course/1. Updates on Udemy Reviews.vtt 6KB
- 22. Boltzmann Machine Intuition/8. Deep Boltzmann Machines.vtt 6KB
- 15. Building a RNN/8. Building a RNN - Step 6.vtt 6KB
- 30. Classification Template/2. Logistic Regression Implementation - Step 2.vtt 6KB
- 4. Building an ANN/10. Building an ANN - Step 6.vtt 5KB
- 28. Regression & Classification Intuition/3. Simple Linear Regression Intuition - Step 2.vtt 5KB
- 10. Building a CNN/5. Building a CNN - Step 2.vtt 5KB
- 10. Building a CNN/11. Building a CNN - Step 8.vtt 5KB
- 3. ANN Intuition/1. Plan of Attack.vtt 5KB
- 22. Boltzmann Machine Intuition/1. Plan of attack.vtt 5KB
- 25. AutoEncoders Intuition/7. Denoising Autoencoders.vtt 5KB
- 30. Classification Template/3. Logistic Regression Implementation - Step 3.vtt 5KB
- 25. AutoEncoders Intuition/8. Contractive Autoencoders.vtt 4KB
- 23. Building a Boltzmann Machine/19. Evaluating the Boltzmann Machine.html 4KB
- 14. RNN Intuition/2. Plan of attack.vtt 4KB
- 18. SOMs Intuition/3. Why revisit K-Means.vtt 4KB
- 25. AutoEncoders Intuition/1. Plan of attack.vtt 4KB
- 4. Building an ANN/8. Building an ANN - Step 4.vtt 4KB
- 25. AutoEncoders Intuition/10. Deep Autoencoders.vtt 3KB
- 9. CNN Intuition/7. Step 3 - Flattening.vtt 3KB
- 1. Welcome to the course/4. How to get the dataset.vtt 3KB
- 10. Building a CNN/1. How to get the dataset.vtt 3KB
- 15. Building a RNN/1. How to get the dataset.vtt 3KB
- 19. Building a SOM/1. How to get the dataset.vtt 3KB
- 23. Building a Boltzmann Machine/1. How to get the dataset.vtt 3KB
- 26. Building an AutoEncoder/1. How to get the dataset.vtt 3KB
- 4. Building an ANN/2. How to get the dataset.vtt 3KB
- 25. AutoEncoders Intuition/9. Stacked Autoencoders.vtt 3KB
- 31. Bonus Lectures/1. YOUR SPECIAL BONUS.html 3KB
- 25. AutoEncoders Intuition/3. A Note on Biases.vtt 2KB
- 10. Building a CNN/6. Building a CNN - Step 3.vtt 2KB
- 26. Building an AutoEncoder/16. THANK YOU bonus video.vtt 2KB
- 28. Regression & Classification Intuition/4. Multiple Linear Regression Intuition.vtt 2KB
- 16. Evaluating, Improving and Tuning the RNN/1. Evaluating the RNN.html 2KB
- 21. ------------------------- Part 5 - Boltzmann Machines -------------------------/1. Welcome to Part 5 - Boltzmann Machines.html 2KB
- 26. Building an AutoEncoder/7. Homework Challenge - Coding Exercise.html 2KB
- 4. Building an ANN/4. Installing Keras.html 1KB
- 26. Building an AutoEncoder/2. Installing PyTorch.html 1KB
- 23. Building a Boltzmann Machine/2. Installing PyTorch.html 1KB
- 4. Building an ANN/1. Prerequisites.html 1KB
- 16. Evaluating, Improving and Tuning the RNN/2. Improving the RNN.html 1KB
- 13. ---------------------- Part 3 - Recurrent Neural Networks ----------------------/1. Welcome to Part 3 - Recurrent Neural Networks.html 1KB
- 24. ---------------------------- Part 6 - AutoEncoders ----------------------------/1. Welcome to Part 6 - AutoEncoders.html 1KB
- 10. Building a CNN/2. Installing Keras.html 927B
- 15. Building a RNN/2. Installing Keras.html 927B
- 12. Evaluating, Improving and Tuning the CNN/1. Homework Challenge - Get the gold medal.html 917B
- 27. ------------------- Annex - Get the Machine Learning Basics -------------------/1. Annex - Get the Machine Learning Basics.html 873B
- 11. Homework - What's that pet/1. Homework Instruction.html 838B
- 16. Evaluating, Improving and Tuning the RNN/3. Tuning the RNN.html 693B
- 5. Homework Challenge - Should we say goodbye to that customer/1. Homework Instruction.html 682B
- 28. Regression & Classification Intuition/1. What You Need for Regression & Classification.html 648B
- 1. Welcome to the course/5. Some Additional Resources!!.html 611B
- 2. --------------------- Part 1 - Artificial Neural Networks ---------------------/1. Welcome to Part 1 - Artificial Neural Networks.html 516B
- 7. Homework Challenge - Put me one step down on the podium/1. Homework Instruction.html 426B
- 9. CNN Intuition/1. What You'll Need for CNN.html 386B
- 14. RNN Intuition/1. What You'll Need for RNN.html 366B
- 23. Building a Boltzmann Machine/4. Same Data Preprocessing in Parts 5 and 6.html 349B
- 26. Building an AutoEncoder/3. Same Data Preprocessing in Parts 5 and 6.html 348B
- 17. ------------------------ Part 4 - Self Organizing Maps ------------------------/1. Welcome to Part 4 - Self Organizing Maps.html 333B
- 8. -------------------- Part 2 - Convolutional Neural Networks --------------------/1. Welcome to Part 2 - Convolutional Neural Networks.html 323B
- 12. Evaluating, Improving and Tuning the CNN/2. Homework Challenge Solution - Get the gold medal.html 185B
- [FreeCourseLab.com].url 126B