[] Udemy - Cluster Analysis and Unsupervised Machine Learning in Python
- 收录时间:2020-02-08 18:56:35
- 文件大小:881MB
- 下载次数:104
- 最近下载:2021-01-13 22:44:13
- 磁力链接:
-
文件列表
- 5. Appendix/2. Windows-Focused Environment Setup 2018.mp4 186MB
- 5. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.vtt 78MB
- 5. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.mp4 78MB
- 5. Appendix/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 44MB
- 5. Appendix/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 39MB
- 5. Appendix/11. What order should I take your courses in (part 2).mp4 38MB
- 3. Hierarchical Clustering/5. Application Donald Trump vs. Hillary Clinton Tweets.mp4 35MB
- 2. K-Means Clustering/5. Soft K-Means in Python Code.mp4 30MB
- 4. Gaussian Mixture Models (GMMs)/3. Write a Gaussian Mixture Model in Python Code.mp4 30MB
- 5. Appendix/10. What order should I take your courses in (part 1).mp4 29MB
- 3. Hierarchical Clustering/4. Application Evolution.mp4 26MB
- 2. K-Means Clustering/12. K-Means Application Finding Clusters of Related Words.mp4 26MB
- 2. K-Means Clustering/3. Soft K-Means.mp4 25MB
- 5. Appendix/4. How to Code by Yourself (part 1).mp4 25MB
- 5. Appendix/6. How to Succeed in this Course (Long Version).mp4 18MB
- 2. K-Means Clustering/7. Examples of where K-Means can fail.mp4 17MB
- 5. Appendix/5. How to Code by Yourself (part 2).mp4 15MB
- 2. K-Means Clustering/1. An Easy Introduction to K-Means Clustering.mp4 13MB
- 3. Hierarchical Clustering/3. Using Hierarchical Clustering in Python and Interpreting the Dendrogram.mp4 12MB
- 2. K-Means Clustering/9. How to Evaluate a Clustering (Purity, Davies-Bouldin Index).mp4 11MB
- 2. K-Means Clustering/10. Using K-Means on Real Data MNIST.mp4 11MB
- 2. K-Means Clustering/11. One Way to Choose K.mp4 9MB
- 5. Appendix/9. Python 2 vs Python 3.mp4 8MB
- 1. Introduction to Unsupervised Learning/2. What is unsupervised learning used for.mp4 8MB
- 1. Introduction to Unsupervised Learning/3. Why Use Clustering.mp4 7MB
- 3. Hierarchical Clustering/2. Agglomerative Clustering Options.mp4 6MB
- 5. Appendix/1. What is the Appendix.mp4 5MB
- 2. K-Means Clustering/6. Visualizing Each Step of K-Means.mp4 5MB
- 4. Gaussian Mixture Models (GMMs)/1. Description of the Gaussian Mixture Model and How to Train a GMM.mp4 5MB
- 4. Gaussian Mixture Models (GMMs)/4. Practical Issues with GMM Singular Covariance.mp4 5MB
- 2. K-Means Clustering/2. Visual Walkthrough of the K-Means Clustering Algorithm.mp4 5MB
- 3. Hierarchical Clustering/1. Visual Walkthrough of Agglomerative Hierarchical Clustering.mp4 4MB
- 1. Introduction to Unsupervised Learning/1. Introduction and Outline.mp4 4MB
- 2. K-Means Clustering/8. Disadvantages of K-Means Clustering.mp4 4MB
- 4. Gaussian Mixture Models (GMMs)/5. Kernel Density Estimation.mp4 4MB
- 4. Gaussian Mixture Models (GMMs)/6. Expectation-Maximization.mp4 4MB
- 1. Introduction to Unsupervised Learning/4. How to Succeed in this Course.mp4 3MB
- 2. K-Means Clustering/4. The K-Means Objective Function.mp4 3MB
- 4. Gaussian Mixture Models (GMMs)/2. Comparison between GMM and K-Means.mp4 3MB
- 4. Gaussian Mixture Models (GMMs)/7. Future Unsupervised Learning Algorithms You Will Learn.mp4 2MB
- 5. Appendix/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 28KB
- 5. Appendix/11. What order should I take your courses in (part 2).vtt 20KB
- 5. Appendix/4. How to Code by Yourself (part 1).vtt 20KB
- 5. Appendix/2. Windows-Focused Environment Setup 2018.vtt 17KB
- 3. Hierarchical Clustering/5. Application Donald Trump vs. Hillary Clinton Tweets.vtt 17KB
- 3. Hierarchical Clustering/4. Application Evolution.vtt 14KB
- 5. Appendix/10. What order should I take your courses in (part 1).vtt 14KB
- 5. Appendix/6. How to Succeed in this Course (Long Version).vtt 13KB
- 5. Appendix/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 12KB
- 5. Appendix/5. How to Code by Yourself (part 2).vtt 12KB
- 2. K-Means Clustering/1. An Easy Introduction to K-Means Clustering.vtt 8KB
- 2. K-Means Clustering/9. How to Evaluate a Clustering (Purity, Davies-Bouldin Index).vtt 8KB
- 2. K-Means Clustering/12. K-Means Application Finding Clusters of Related Words.vtt 7KB
- 2. K-Means Clustering/5. Soft K-Means in Python Code.vtt 7KB
- 4. Gaussian Mixture Models (GMMs)/3. Write a Gaussian Mixture Model in Python Code.vtt 7KB
- 2. K-Means Clustering/10. Using K-Means on Real Data MNIST.vtt 6KB
- 2. K-Means Clustering/3. Soft K-Means.vtt 6KB
- 5. Appendix/9. Python 2 vs Python 3.vtt 5KB
- 1. Introduction to Unsupervised Learning/2. What is unsupervised learning used for.vtt 5KB
- 1. Introduction to Unsupervised Learning/3. Why Use Clustering.vtt 5KB
- 3. Hierarchical Clustering/2. Agglomerative Clustering Options.vtt 5KB
- 2. K-Means Clustering/7. Examples of where K-Means can fail.vtt 4KB
- 2. K-Means Clustering/11. One Way to Choose K.vtt 4KB
- 3. Hierarchical Clustering/3. Using Hierarchical Clustering in Python and Interpreting the Dendrogram.vtt 4KB
- 4. Gaussian Mixture Models (GMMs)/4. Practical Issues with GMM Singular Covariance.vtt 4KB
- 1. Introduction to Unsupervised Learning/4. How to Succeed in this Course.vtt 3KB
- 4. Gaussian Mixture Models (GMMs)/1. Description of the Gaussian Mixture Model and How to Train a GMM.vtt 3KB
- 2. K-Means Clustering/2. Visual Walkthrough of the K-Means Clustering Algorithm.vtt 3KB
- 5. Appendix/1. What is the Appendix.vtt 3KB
- 1. Introduction to Unsupervised Learning/1. Introduction and Outline.vtt 3KB
- 3. Hierarchical Clustering/1. Visual Walkthrough of Agglomerative Hierarchical Clustering.vtt 3KB
- 2. K-Means Clustering/8. Disadvantages of K-Means Clustering.vtt 3KB
- 4. Gaussian Mixture Models (GMMs)/5. Kernel Density Estimation.vtt 3KB
- 4. Gaussian Mixture Models (GMMs)/6. Expectation-Maximization.vtt 2KB
- 2. K-Means Clustering/6. Visualizing Each Step of K-Means.vtt 2KB
- 4. Gaussian Mixture Models (GMMs)/2. Comparison between GMM and K-Means.vtt 2KB
- 2. K-Means Clustering/4. The K-Means Objective Function.vtt 2KB
- 4. Gaussian Mixture Models (GMMs)/7. Future Unsupervised Learning Algorithms You Will Learn.vtt 1KB
- [FCS Forum].url 133B
- [FreeCourseSite.com].url 127B