[] [UDEMY] Machine Learning and AI Support Vector Machines in Python [FTU]
- 收录时间:2019-12-13 18:44:58
- 文件大小:3GB
- 下载次数:105
- 最近下载:2021-01-18 15:01:38
- 磁力链接:
-
文件列表
- 9. Appendix/2. Windows-Focused Environment Setup 2018.mp4 194MB
- 9. Appendix/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 167MB
- 9. Appendix/11. What order should I take your courses in (part 2).mp4 123MB
- 9. Appendix/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 118MB
- 2. Beginner_s Corner/3. Spam Detection with SVMs.mp4 101MB
- 9. Appendix/10. What order should I take your courses in (part 1).mp4 88MB
- 7. Implementations and Extensions/3. SVM with Projected Gradient Descent Code.mp4 84MB
- 9. Appendix/6. How to Code by Yourself (part 1).mp4 83MB
- 8. Neural Networks (Beginner_s Corner 2)/2. RBF Networks.mp4 80MB
- 9. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.mp4 78MB
- 8. Neural Networks (Beginner_s Corner 2)/7. Neural Network-SVM Mashup.mp4 72MB
- 4. Linear SVM/5. Linear and Quadratic Programming.mp4 64MB
- 7. Implementations and Extensions/5. Kernel SVM Gradient Descent with Primal (Code).mp4 59MB
- 5. Duality/2. Duality and Lagrangians (part 1).mp4 59MB
- 9. Appendix/7. How to Code by Yourself (part 2).mp4 57MB
- 2. Beginner_s Corner/6. Cross-Validation.mp4 55MB
- 4. Linear SVM/9. Linear SVM with Gradient Descent (Code).mp4 52MB
- 2. Beginner_s Corner/5. Regression with SVMs.mp4 51MB
- 4. Linear SVM/4. Linear SVM Objective.mp4 49MB
- 2. Beginner_s Corner/4. Medical Diagnosis with SVMs.mp4 48MB
- 3. Review of Linear Classifiers/6. Nonlinear Problems.mp4 47MB
- 3. Review of Linear Classifiers/1. Basic Geometry.mp4 47MB
- 8. Neural Networks (Beginner_s Corner 2)/3. RBF Approximations.mp4 44MB
- 4. Linear SVM/3. Margins.mp4 41MB
- 7. Implementations and Extensions/6. SMO (Sequential Minimal Optimization).mp4 41MB
- 3. Review of Linear Classifiers/3. Logistic Regression Review.mp4 40MB
- 9. Appendix/5. How to Succeed in this Course (Long Version).mp4 39MB
- 8. Neural Networks (Beginner_s Corner 2)/5. Build Your Own RBF Network.mp4 39MB
- 1. Welcome/4. Where to get the code and data.mp4 39MB
- 7. Implementations and Extensions/1. Dual with Slack Variables.mp4 39MB
- 5. Duality/5. Predictions and Support Vectors.mp4 39MB
- 4. Linear SVM/6. Slack Variables.mp4 39MB
- 6. Kernel Methods/2. The Kernel Trick.mp4 37MB
- 1. Welcome/2. Course Objectives.mp4 37MB
- 2. Beginner_s Corner/2. Image Classification with SVMs.mp4 36MB
- 6. Kernel Methods/5. Using the Gaussian Kernel.mp4 36MB
- 2. Beginner_s Corner/1. Beginner_s Corner Section Introduction.mp4 34MB
- 8. Neural Networks (Beginner_s Corner 2)/6. Relationship to Deep Learning Neural Networks.mp4 34MB
- 6. Kernel Methods/7. Other Kernels.mp4 32MB
- 1. Welcome/3. Course Outline.mp4 31MB
- 3. Review of Linear Classifiers/5. Prediction Confidence.mp4 31MB
- 9. Appendix/9. Python 2 vs Python 3.mp4 30MB
- 4. Linear SVM/7. Hinge Loss (and its Relationship to Logistic Regression).mp4 30MB
- 5. Duality/3. Lagrangian Duality (part 2).mp4 29MB
- 2. Beginner_s Corner/7. How do you get the data How do you process the data.mp4 29MB
- 6. Kernel Methods/8. Mercer_s Condition.mp4 28MB
- 7. Implementations and Extensions/7. Support Vector Regression.mp4 27MB
- 6. Kernel Methods/4. Gaussian Kernel.mp4 27MB
- 9. Appendix/1. What is the Appendix.mp4 25MB
- 6. Kernel Methods/3. Polynomial Kernel.mp4 25MB
- 7. Implementations and Extensions/2. Simple Approaches to Implementation.mp4 25MB
- 4. Linear SVM/2. Linear SVM Problem Setup and Definitions.mp4 23MB
- 9. Appendix/12. [Bonus] Where to get discount coupons and FREE deep learning material.mp4 22MB
- 7. Implementations and Extensions/4. Kernel SVM Gradient Descent with Primal (Theory).mp4 21MB
- 5. Duality/4. Relationship to Linear Programming.mp4 20MB
- 6. Kernel Methods/6. Why does the Gaussian Kernel correspond to infinite-dimensional features.mp4 20MB
- 3. Review of Linear Classifiers/7. Linear Classifiers Section Conclusion.mp4 19MB
- 6. Kernel Methods/1. Kernel Methods Section Introduction.mp4 19MB
- 7. Implementations and Extensions/8. Multiclass Classification.mp4 19MB
- 4. Linear SVM/10. Linear SVM Section Summary.mp4 19MB
- 4. Linear SVM/1. Linear SVM Section Introduction and Outline.mp4 18MB
- 5. Duality/6. Why Transform Primal to Dual.mp4 17MB
- 3. Review of Linear Classifiers/4. Loss Function and Regularization.mp4 16MB
- 1. Welcome/1. Introduction.mp4 16MB
- 4. Linear SVM/8. Linear SVM with Gradient Descent.mp4 16MB
- 8. Neural Networks (Beginner_s Corner 2)/1. Neural Networks Section Introduction.mp4 16MB
- 3. Review of Linear Classifiers/2. Normal Vectors.mp4 15MB
- 5. Duality/1. Duality Section Introduction.mp4 15MB
- 5. Duality/7. Duality Section Conclusion.mp4 13MB
- 8. Neural Networks (Beginner_s Corner 2)/4. What Happened to Infinite Dimensionality.mp4 13MB
- 8. Neural Networks (Beginner_s Corner 2)/8. Neural Networks Section Conclusion.mp4 12MB
- 6. Kernel Methods/9. Kernel Methods Section Summary.mp4 11MB
- FreeCoursesOnline.Me.html 108KB
- FTUForum.com.html 100KB
- Discuss.FTUForum.com.html 32KB
- 9. Appendix/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 28KB
- 9. Appendix/11. What order should I take your courses in (part 2).vtt 20KB
- 9. Appendix/6. How to Code by Yourself (part 1).vtt 19KB
- 9. Appendix/2. Windows-Focused Environment Setup 2018.vtt 17KB
- 8. Neural Networks (Beginner_s Corner 2)/2. RBF Networks.vtt 17KB
- 9. Appendix/10. What order should I take your courses in (part 1).vtt 14KB
- 5. Duality/2. Duality and Lagrangians (part 1).vtt 14KB
- 4. Linear SVM/5. Linear and Quadratic Programming.vtt 13KB
- 9. Appendix/5. How to Succeed in this Course (Long Version).vtt 13KB
- 9. Appendix/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 13KB
- 2. Beginner_s Corner/3. Spam Detection with SVMs.vtt 12KB
- 9. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.vtt 12KB
- 4. Linear SVM/4. Linear SVM Objective.vtt 12KB
- 9. Appendix/7. How to Code by Yourself (part 2).vtt 11KB
- 3. Review of Linear Classifiers/1. Basic Geometry.vtt 11KB
- 7. Implementations and Extensions/1. Dual with Slack Variables.vtt 11KB
- 3. Review of Linear Classifiers/3. Logistic Regression Review.vtt 11KB
- 7. Implementations and Extensions/6. SMO (Sequential Minimal Optimization).vtt 11KB
- 3. Review of Linear Classifiers/6. Nonlinear Problems.vtt 10KB
- 5. Duality/5. Predictions and Support Vectors.vtt 10KB
- 8. Neural Networks (Beginner_s Corner 2)/3. RBF Approximations.vtt 9KB
- 4. Linear SVM/3. Margins.vtt 9KB
- 2. Beginner_s Corner/6. Cross-Validation.vtt 8KB
- 6. Kernel Methods/2. The Kernel Trick.vtt 8KB
- 4. Linear SVM/6. Slack Variables.vtt 8KB
- 3. Review of Linear Classifiers/5. Prediction Confidence.vtt 8KB
- 7. Implementations and Extensions/3. SVM with Projected Gradient Descent Code.vtt 8KB
- 8. Neural Networks (Beginner_s Corner 2)/6. Relationship to Deep Learning Neural Networks.vtt 8KB
- 6. Kernel Methods/5. Using the Gaussian Kernel.vtt 8KB
- 8. Neural Networks (Beginner_s Corner 2)/7. Neural Network-SVM Mashup.vtt 7KB
- 6. Kernel Methods/7. Other Kernels.vtt 7KB
- 1. Welcome/4. Where to get the code and data.vtt 7KB
- 7. Implementations and Extensions/2. Simple Approaches to Implementation.vtt 7KB
- 5. Duality/3. Lagrangian Duality (part 2).vtt 7KB
- 2. Beginner_s Corner/7. How do you get the data How do you process the data.vtt 7KB
- 1. Welcome/3. Course Outline.vtt 7KB
- 4. Linear SVM/7. Hinge Loss (and its Relationship to Logistic Regression).vtt 7KB
- 6. Kernel Methods/8. Mercer_s Condition.vtt 7KB
- 2. Beginner_s Corner/2. Image Classification with SVMs.vtt 6KB
- 2. Beginner_s Corner/1. Beginner_s Corner Section Introduction.vtt 6KB
- 2. Beginner_s Corner/4. Medical Diagnosis with SVMs.vtt 6KB
- 6. Kernel Methods/3. Polynomial Kernel.vtt 6KB
- 7. Implementations and Extensions/7. Support Vector Regression.vtt 6KB
- 1. Welcome/2. Course Objectives.vtt 6KB
- 2. Beginner_s Corner/5. Regression with SVMs.vtt 6KB
- 9. Appendix/9. Python 2 vs Python 3.vtt 5KB
- 4. Linear SVM/9. Linear SVM with Gradient Descent (Code).vtt 5KB
- 6. Kernel Methods/4. Gaussian Kernel.vtt 5KB
- 4. Linear SVM/2. Linear SVM Problem Setup and Definitions.vtt 5KB
- 7. Implementations and Extensions/4. Kernel SVM Gradient Descent with Primal (Theory).vtt 5KB
- 7. Implementations and Extensions/8. Multiclass Classification.vtt 5KB
- 4. Linear SVM/10. Linear SVM Section Summary.vtt 5KB
- 3. Review of Linear Classifiers/7. Linear Classifiers Section Conclusion.vtt 5KB
- 5. Duality/4. Relationship to Linear Programming.vtt 5KB
- 6. Kernel Methods/6. Why does the Gaussian Kernel correspond to infinite-dimensional features.vtt 4KB
- 3. Review of Linear Classifiers/4. Loss Function and Regularization.vtt 4KB
- 5. Duality/1. Duality Section Introduction.vtt 4KB
- 7. Implementations and Extensions/5. Kernel SVM Gradient Descent with Primal (Code).vtt 4KB
- 8. Neural Networks (Beginner_s Corner 2)/5. Build Your Own RBF Network.vtt 4KB
- 6. Kernel Methods/1. Kernel Methods Section Introduction.vtt 4KB
- 5. Duality/6. Why Transform Primal to Dual.vtt 4KB
- 4. Linear SVM/1. Linear SVM Section Introduction and Outline.vtt 4KB
- 3. Review of Linear Classifiers/2. Normal Vectors.vtt 4KB
- 9. Appendix/1. What is the Appendix.vtt 3KB
- 4. Linear SVM/8. Linear SVM with Gradient Descent.vtt 3KB
- 8. Neural Networks (Beginner_s Corner 2)/1. Neural Networks Section Introduction.vtt 3KB
- 5. Duality/7. Duality Section Conclusion.vtt 3KB
- 9. Appendix/12. [Bonus] Where to get discount coupons and FREE deep learning material.vtt 3KB
- 8. Neural Networks (Beginner_s Corner 2)/4. What Happened to Infinite Dimensionality.vtt 3KB
- 8. Neural Networks (Beginner_s Corner 2)/8. Neural Networks Section Conclusion.vtt 3KB
- 6. Kernel Methods/9. Kernel Methods Section Summary.vtt 3KB
- 1. Welcome/1. Introduction.vtt 3KB
- [TGx]Downloaded from torrentgalaxy.org.txt 524B
- How you can help Team-FTU.txt 235B
- Torrent Downloaded From GloDls.to.txt 84B