589689.xyz

[] Udemy - Complete Data Analysis Course with Pandas & NumPy Python

  • 收录时间:2019-12-28 16:50:17
  • 文件大小:4GB
  • 下载次数:39
  • 最近下载:2021-01-14 08:18:01
  • 磁力链接:

文件列表

  1. 9. Pandas Exercise/2. Pandas Exercise Solution - I.mp4 133MB
  2. 9. Pandas Exercise/3. Pandas Exercise Solution - II.mp4 132MB
  3. 5. Python Exercises/2. Solutions.mp4 109MB
  4. 1. Introduction/1. What is Data analysis.mp4 96MB
  5. 6. Numpy/2. Numpy indexing and selection, Functions.mp4 94MB
  6. 18. Data cleaning/3. Data cleaning - Youtube Channel Dataset Part - 3.mp4 91MB
  7. 17. Working with Time series data/2. Pandas Timestamp and Datetimeindex object.mp4 86MB
  8. 8. Data Frame Pandas/2. Create Data Frame - random data + from File.mp4 85MB
  9. 6. Numpy/1. Creating NumPy array.mp4 85MB
  10. 8. Data Frame Pandas/13. sorting values.mp4 85MB
  11. 8. Data Frame Pandas/3. Data frame attributes and methods.mp4 83MB
  12. 1. Introduction/2. Introduction to Pandas.mp4 78MB
  13. 8. Data Frame Pandas/15. .loc() and .iloc() method.mp4 75MB
  14. 2. Installation and IDE/7. Getting started with Jupyter Lab.mp4 75MB
  15. 1. Introduction/3. Course FAQ.mp4 74MB
  16. 8. Data Frame Pandas/1. Introduction to Data Frame.mp4 73MB
  17. 14. Working with Text Data/3. More String methods.mp4 71MB
  18. 8. Data Frame Pandas/8. Filtering Data with one condition.mp4 69MB
  19. 11. Pandas Options/1. max_rows , max_columns.mp4 66MB
  20. 12. Visualize Data with Pandas/1. Display Stock data with Line Chart.mp4 64MB
  21. 4. Python Crash Course [Optional]/6. Lists and tuples.mp4 63MB
  22. 6. Numpy/3. Some more Numpy Functions.mp4 62MB
  23. 13. Import and Export data from Pandas/1. read_csv() & to_csv() method.mp4 62MB
  24. 6. Numpy/8. Split, Concatenate, Tile and Repeat array.mp4 60MB
  25. 7. Series Pandas/6. Series attributes & methods.mp4 58MB
  26. 2. Installation and IDE/4. Anaconda + Conda Command.mp4 57MB
  27. 12. Visualize Data with Pandas/2. Pie, Histogram and Bar Chart.mp4 56MB
  28. 8. Data Frame Pandas/20. .apply() method on multiple column.mp4 56MB
  29. 2. Installation and IDE/1. Different ways of installation.mp4 53MB
  30. 7. Series Pandas/2. Introduction to Series.mp4 51MB
  31. 6. Numpy/5. List vs NumPy Array.mp4 51MB
  32. 16. Data Frame Multiindex/7. Transposing DataFrame.mp4 51MB
  33. 8. Data Frame Pandas/17. .astype() method - optimize memory requirement.mp4 50MB
  34. 4. Python Crash Course [Optional]/2. Python Basics - I.mp4 50MB
  35. 18. Data cleaning/2. Data cleaning - Youtube Channel Dataset Part - 2.mp4 49MB
  36. 16. Data Frame Multiindex/8. UnStack and Stack Data.mp4 49MB
  37. 15. Data Grouping/1. Importing Data Grouping.mp4 49MB
  38. 15. Data Grouping/4. Sum, Mean, Max, Min Method.mp4 48MB
  39. 7. Series Pandas/4. Create Series from CSV file.mp4 48MB
  40. 7. Series Pandas/3. Create Series from Python Object.mp4 48MB
  41. 2. Installation and IDE/2. Download and Install anaconda + Pandas.mp4 47MB
  42. 6. Numpy/7. Insert, Append and Delete NumPy array.mp4 45MB
  43. 8. Data Frame Pandas/5. Select one or more than one column.mp4 45MB
  44. 14. Working with Text Data/1. Getting started with Data.mp4 44MB
  45. 6. Numpy/4. Linear algebra with NumPy.mp4 44MB
  46. 14. Working with Text Data/2. Some String methods.mp4 43MB
  47. 14. Working with Text Data/4. Filtering Message with String.mp4 41MB
  48. 16. Data Frame Multiindex/4. Index - Meta Information.mp4 39MB
  49. 15. Data Grouping/5. .agg method.mp4 39MB
  50. 16. Data Frame Multiindex/6. Fetch data from MultiIndex Dataframe.mp4 39MB
  51. 16. Data Frame Multiindex/9. Pivot and Pivot_table Method.mp4 39MB
  52. 8. Data Frame Pandas/9. Filtering Data with multiple condition.mp4 39MB
  53. 8. Data Frame Pandas/14. sort index and inplace parameter.mp4 38MB
  54. 15. Data Grouping/2. Getting Group.mp4 37MB
  55. 8. Data Frame Pandas/10. Filtering Data with .isin() method.mp4 37MB
  56. 17. Working with Time series data/1. Python Date and Datetime module.mp4 36MB
  57. 8. Data Frame Pandas/7. Drop missing row or column.mp4 36MB
  58. 4. Python Crash Course [Optional]/8. Dictionary and set.mp4 35MB
  59. 8. Data Frame Pandas/19. .apply() method on single column.mp4 35MB
  60. 6. Numpy/6. Views vs Copy - Numpy Array.mp4 35MB
  61. 4. Python Crash Course [Optional]/1. Introduction.mp4 34MB
  62. 8. Data Frame Pandas/18. set_index() change index column.mp4 34MB
  63. 7. Series Pandas/10. inplace parameter, sort_values & sort_index.mp4 33MB
  64. 7. Series Pandas/16. .apply() and .map() method.mp4 33MB
  65. 16. Data Frame Multiindex/3. Sorting MultiIndex.mp4 32MB
  66. 15. Data Grouping/3. Size, First and Last Method.mp4 31MB
  67. 8. Data Frame Pandas/4. Adding new column.mp4 31MB
  68. 8. Data Frame Pandas/12. unique() & nunique() method.mp4 30MB
  69. 14. Working with Text Data/5. Splitting Text.mp4 29MB
  70. 5. Python Exercises/1. Exercise Overview.mp4 29MB
  71. 8. Data Frame Pandas/21. Fetch random sample.mp4 29MB
  72. 9. Pandas Exercise/1. Exercise Overview Google App store dataset.mp4 29MB
  73. 8. Data Frame Pandas/11. Filtering Data with .between() method.mp4 29MB
  74. 8. Data Frame Pandas/6. Broadcasting operation.mp4 28MB
  75. 4. Python Crash Course [Optional]/4. Python Basics - II.mp4 28MB
  76. 4. Python Crash Course [Optional]/10. Functions.mp4 26MB
  77. 7. Series Pandas/13. Extract Value from Series.mp4 26MB
  78. 2. Installation and IDE/9. Import Library.mp4 24MB
  79. 16. Data Frame Multiindex/2. Set multiple column as index.mp4 23MB
  80. 8. Data Frame Pandas/16. .ix() method.mp4 22MB
  81. 7. Series Pandas/8. Label indexing.mp4 19MB
  82. 18. Data cleaning/1. Data cleaning - Youtube Dataset (warm up) Part - 1.mp4 18MB
  83. 7. Series Pandas/12. Apply Python built in function on Series.mp4 14MB
  84. 3. Code Download/1.1 code.zip.zip 14MB
  85. 3. Code Download/1.2 code.zip.zip 14MB
  86. 11. Pandas Options/2. precision.mp4 13MB
  87. 16. Data Frame Multiindex/5. Change Index names.mp4 10MB
  88. 14. Working with Text Data/6. Processing on Column names.mp4 10MB
  89. 16. Data Frame Multiindex/1. Import Data - Multiindex.mp4 10MB
  90. 10. Panel Pandas/1. Warning - Panel Data type.mp4 9MB
  91. 7. Series Pandas/15. .value_counts() Method.mp4 8MB
  92. 3. Code Download/1.1 Pandas.pdf.pdf 650KB
  93. 3. Code Download/1.2 Pandas.pdf.pdf 650KB
  94. 9. Pandas Exercise/1.1 Pandas Exercise.zip.zip 310KB
  95. 18. Data cleaning/1.1 Data Cleaning.zip.zip 261KB
  96. 8. Data Frame Pandas/2.1 Read_CSV.pdf.pdf 107KB
  97. 8. Data Frame Pandas/5.1 Select Column.pdf.pdf 85KB
  98. 6. Numpy/1.1 Numpy.zip.zip 51KB
  99. 6. Numpy/1.2 Numpy.zip.zip 51KB
  100. 6. Numpy/1.3 Numpy.zip.zip 51KB
  101. 5. Python Exercises/2. Solutions.vtt 22KB
  102. 6. Numpy/1. Creating NumPy array.vtt 18KB
  103. 6. Numpy/2. Numpy indexing and selection, Functions.vtt 17KB
  104. 4. Python Crash Course [Optional]/6. Lists and tuples.vtt 17KB
  105. 4. Python Crash Course [Optional]/2. Python Basics - I.vtt 17KB
  106. 9. Pandas Exercise/2. Pandas Exercise Solution - I.vtt 17KB
  107. 17. Working with Time series data/2. Pandas Timestamp and Datetimeindex object.vtt 17KB
  108. 9. Pandas Exercise/3. Pandas Exercise Solution - II.vtt 16KB
  109. 8. Data Frame Pandas/15. .loc() and .iloc() method.vtt 15KB
  110. 2. Installation and IDE/7. Getting started with Jupyter Lab.vtt 15KB
  111. 14. Working with Text Data/3. More String methods.vtt 15KB
  112. 18. Data cleaning/3. Data cleaning - Youtube Channel Dataset Part - 3.vtt 14KB
  113. 7. Series Pandas/6. Series attributes & methods.vtt 14KB
  114. 12. Visualize Data with Pandas/1. Display Stock data with Line Chart.vtt 14KB
  115. 8. Data Frame Pandas/3. Data frame attributes and methods.vtt 13KB
  116. 6. Numpy/3. Some more Numpy Functions.vtt 13KB
  117. 6. Numpy/8. Split, Concatenate, Tile and Repeat array.vtt 13KB
  118. 6. Numpy/5. List vs NumPy Array.vtt 12KB
  119. 8. Data Frame Pandas/2. Create Data Frame - random data + from File.vtt 12KB
  120. 13. Import and Export data from Pandas/1. read_csv() & to_csv() method.vtt 12KB
  121. 7. Series Pandas/3. Create Series from Python Object.vtt 12KB
  122. 4. Python Crash Course [Optional]/8. Dictionary and set.vtt 11KB
  123. 8. Data Frame Pandas/8. Filtering Data with one condition.vtt 11KB
  124. 12. Visualize Data with Pandas/2. Pie, Histogram and Bar Chart.vtt 11KB
  125. 6. Numpy/7. Insert, Append and Delete NumPy array.vtt 11KB
  126. 17. Working with Time series data/3. Generate Time sequence.vtt 10KB
  127. 8. Data Frame Pandas/13. sorting values.vtt 10KB
  128. 11. Pandas Options/1. max_rows , max_columns.vtt 10KB
  129. 11. Pandas Options/1.1 Pandas Settings.zip.zip 10KB
  130. 7. Series Pandas/4. Create Series from CSV file.vtt 10KB
  131. 6. Numpy/4. Linear algebra with NumPy.vtt 9KB
  132. 7. Series Pandas/16. .apply() and .map() method.vtt 9KB
  133. 8. Data Frame Pandas/7. Drop missing row or column.vtt 9KB
  134. 18. Data cleaning/2. Data cleaning - Youtube Channel Dataset Part - 2.vtt 9KB
  135. 8. Data Frame Pandas/20. .apply() method on multiple column.vtt 9KB
  136. 4. Python Crash Course [Optional]/4. Python Basics - II.vtt 9KB
  137. 2. Installation and IDE/9. Import Library.vtt 9KB
  138. 8. Data Frame Pandas/17. .astype() method - optimize memory requirement.vtt 9KB
  139. 2. Installation and IDE/4. Anaconda + Conda Command.vtt 9KB
  140. 14. Working with Text Data/2. Some String methods.vtt 8KB
  141. 16. Data Frame Multiindex/7. Transposing DataFrame.vtt 8KB
  142. 7. Series Pandas/10. inplace parameter, sort_values & sort_index.vtt 8KB
  143. 6. Numpy/6. Views vs Copy - Numpy Array.vtt 8KB
  144. 4. Python Crash Course [Optional]/10. Functions.vtt 8KB
  145. 17. Working with Time series data/1. Python Date and Datetime module.vtt 8KB
  146. 16. Data Frame Multiindex/8. UnStack and Stack Data.vtt 8KB
  147. 8. Data Frame Pandas/5. Select one or more than one column.vtt 8KB
  148. 15. Data Grouping/4. Sum, Mean, Max, Min Method.vtt 8KB
  149. 14. Working with Text Data/4. Filtering Message with String.vtt 8KB
  150. 15. Data Grouping/5. .agg method.vtt 7KB
  151. 2. Installation and IDE/2. Download and Install anaconda + Pandas.vtt 7KB
  152. 16. Data Frame Multiindex/6. Fetch data from MultiIndex Dataframe.vtt 7KB
  153. 7. Series Pandas/13. Extract Value from Series.vtt 7KB
  154. 16. Data Frame Multiindex/9. Pivot and Pivot_table Method.vtt 7KB
  155. 8. Data Frame Pandas/9. Filtering Data with multiple condition.vtt 7KB
  156. 15. Data Grouping/2. Getting Group.vtt 7KB
  157. 8. Data Frame Pandas/19. .apply() method on single column.vtt 6KB
  158. 1. Introduction/1. What is Data analysis.vtt 6KB
  159. 14. Working with Text Data/5. Splitting Text.vtt 6KB
  160. 16. Data Frame Multiindex/4. Index - Meta Information.vtt 6KB
  161. 16. Data Frame Multiindex/3. Sorting MultiIndex.vtt 6KB
  162. 8. Data Frame Pandas/10. Filtering Data with .isin() method.vtt 6KB
  163. 15. Data Grouping/3. Size, First and Last Method.vtt 6KB
  164. 14. Working with Text Data/1. Getting started with Data.vtt 6KB
  165. 8. Data Frame Pandas/14. sort index and inplace parameter.vtt 6KB
  166. 15. Data Grouping/1. Importing Data Grouping.vtt 6KB
  167. 1. Introduction/3. Course FAQ.vtt 5KB
  168. 18. Data cleaning/1. Data cleaning - Youtube Dataset (warm up) Part - 1.vtt 5KB
  169. 8. Data Frame Pandas/12. unique() & nunique() method.vtt 5KB
  170. 5. Python Exercises/1. Exercise Overview.vtt 5KB
  171. 8. Data Frame Pandas/1. Introduction to Data Frame.vtt 5KB
  172. 7. Series Pandas/8. Label indexing.vtt 5KB
  173. 8. Data Frame Pandas/21. Fetch random sample.vtt 5KB
  174. 8. Data Frame Pandas/18. set_index() change index column.vtt 5KB
  175. 16. Data Frame Multiindex/2. Set multiple column as index.vtt 5KB
  176. 8. Data Frame Pandas/16. .ix() method.vtt 5KB
  177. 1. Introduction/2. Introduction to Pandas.vtt 5KB
  178. 8. Data Frame Pandas/6. Broadcasting operation.vtt 4KB
  179. 10. Panel Pandas/1. Warning - Panel Data type.vtt 4KB
  180. 8. Data Frame Pandas/11. Filtering Data with .between() method.vtt 4KB
  181. 8. Data Frame Pandas/4. Adding new column.vtt 4KB
  182. 9. Pandas Exercise/1. Exercise Overview Google App store dataset.vtt 4KB
  183. 2. Installation and IDE/1. Different ways of installation.vtt 3KB
  184. 7. Series Pandas/2. Introduction to Series.vtt 3KB
  185. 4. Python Crash Course [Optional]/1.1 Python Crash Course.zip.zip 3KB
  186. 7. Series Pandas/12. Apply Python built in function on Series.vtt 3KB
  187. 16. Data Frame Multiindex/1. Import Data - Multiindex.vtt 3KB
  188. 11. Pandas Options/2. precision.vtt 3KB
  189. 5. Python Exercises/1.1 Python Exercise.zip.zip 3KB
  190. 4. Python Crash Course [Optional]/1. Introduction.vtt 2KB
  191. 14. Working with Text Data/6. Processing on Column names.vtt 2KB
  192. 7. Series Pandas/15. .value_counts() Method.vtt 2KB
  193. 16. Data Frame Multiindex/5. Change Index names.vtt 2KB
  194. 2. Installation and IDE/3. Troubleshooting 'conda' is not recognized as an internal or external command.html 1KB
  195. 20. Bonus Lecture/1. Bonus Lecture.html 664B
  196. 2. Installation and IDE/9.1 Import Library.zip.zip 526B
  197. 2. Installation and IDE/9.2 Import Library.zip.zip 526B
  198. 2. Installation and IDE/9.3 Import Library.zip.zip 526B
  199. 2. Installation and IDE/6. anaconda, conda & pandas Update.html 412B
  200. 7. Series Pandas/1. Series.html 380B
  201. 2. Installation and IDE/5. Conda Cheatsheet.html 321B
  202. 2. Installation and IDE/8. Jupyter Notebook cheatsheet.html 290B
  203. 19. Appendix Numpy - Numerical Python Library/1. Notes.html 222B
  204. 7. Series Pandas/15.1 Pandas value_count method.html 173B
  205. 2. Installation and IDE/5.1 Conda Cheatsheet.html 171B
  206. 7. Series Pandas/16.1 Pandas.Series.map.html 160B
  207. 7. Series Pandas/16.2 Pandas.Series.map.html 160B
  208. 8. Data Frame Pandas/9.1 Truth Table for AND and OR operation.html 157B
  209. 2. Installation and IDE/8.1 Jupyter Notebook cheatsheet.html 150B
  210. 7. Series Pandas/10.1 sorting.html 150B
  211. 7. Series Pandas/10.2 sorting.html 150B
  212. 7. Series Pandas/10.1 sorting index.html 149B
  213. 7. Series Pandas/10.2 sorting index.html 149B
  214. 6. Numpy/1.1 NumPy cheatsheet.html 146B
  215. 6. Numpy/1.2 NumPy cheatsheet.html 146B
  216. 6. Numpy/1.3 NumPy cheatsheet.html 146B
  217. 7. Series Pandas/16.1 Pandas.Series.apply.html 144B
  218. 7. Series Pandas/16.2 Pandas.Series.apply.html 144B
  219. 7. Series Pandas/4.1 Read CSV file.html 140B
  220. 7. Series Pandas/3.1 Series constructor.html 138B
  221. 1. Introduction/4. Pandas.html 136B
  222. 12. Visualize Data with Pandas/3. Data Visualization.html 136B
  223. 2. Installation and IDE/10. Installation.html 136B
  224. 4. Python Crash Course [Optional]/11. Python - 1.html 136B
  225. 4. Python Crash Course [Optional]/12. Python - 2.html 136B
  226. 4. Python Crash Course [Optional]/3. Data types, Numbers, String.html 136B
  227. 4. Python Crash Course [Optional]/5. Loops & Decision making.html 136B
  228. 4. Python Crash Course [Optional]/7. Lists and tuples.html 136B
  229. 4. Python Crash Course [Optional]/9. Dictionary and set.html 136B
  230. 6. Numpy/9. NumPy.html 136B
  231. 7. Series Pandas/11. inplace parameter, sort_values & sort_index.html 136B
  232. 7. Series Pandas/14. Extract Value from Series.html 136B
  233. 7. Series Pandas/17. .apply() and .map() method.html 136B
  234. 7. Series Pandas/18. Series.html 136B
  235. 7. Series Pandas/5. Create Series Object.html 136B
  236. 7. Series Pandas/7. Series attributes & methods.html 136B
  237. 7. Series Pandas/9. Label indexing.html 136B
  238. 2. Installation and IDE/6.1 Updating from older versions.html 119B
  239. 6. Numpy/1.1 Numpy Quick tutorial.html 114B
  240. 6. Numpy/1.3 Numpy Quick tutorial.html 114B
  241. 2. Installation and IDE/2.1 Windows Installation.html 112B
  242. 2. Installation and IDE/2.2 Windows Installation.html 112B
  243. 2. Installation and IDE/2.3 Windows Installation.html 112B
  244. 2. Installation and IDE/2.4 Windows Installation.html 112B
  245. 2. Installation and IDE/2.1 MacOS installation.html 111B
  246. 2. Installation and IDE/2.3 MacOS installation.html 111B
  247. 2. Installation and IDE/2.4 MacOS installation.html 111B
  248. 2. Installation and IDE/2.2 Linux Installation.html 110B
  249. 2. Installation and IDE/2.3 Linux Installation.html 110B
  250. 2. Installation and IDE/2.4 Linux Installation.html 110B
  251. 2. Installation and IDE/9.1 Python Import Documentation.html 108B
  252. 2. Installation and IDE/9.3 Python Import Documentation.html 108B
  253. 2. Installation and IDE/9.2 Pandas Documentation.html 106B
  254. 2. Installation and IDE/9.3 Pandas Documentation.html 106B
  255. 2. Installation and IDE/7.1 Jupyter Lab Documentation.html 105B
  256. 3. Code Download/1. Python Code.html 103B
  257. 2. Installation and IDE/2.1 Anaconda PythonR Distribution - Anaconda.html 99B
  258. 2. Installation and IDE/2.2 Anaconda PythonR Distribution - Anaconda.html 99B
  259. 2. Installation and IDE/2.3 Anaconda PythonR Distribution - Anaconda.html 99B
  260. 2. Installation and IDE/2.4 Anaconda PythonR Distribution - Anaconda.html 99B
  261. 2. Installation and IDE/4.1 Conda utility documentation.html 88B
  262. [DesireCourse.Net].url 51B
  263. [CourseClub.Me].url 48B