[Udemy] Data Analysis In-Depth (In Python) ()
- 收录时间:2022-03-20 09:20:09
- 文件大小:21GB
- 下载次数:1
- 最近下载:2022-03-20 09:20:09
- 磁力链接:
-
文件列表
- 22. Day 20 A - EDA Cont.mp4 1GB
- 8. Day 8 - Statistics for Data Analysis - Statistical Hypothesis.mp4 1GB
- 18. Day 17 - Pandas.mp4 1GB
- 19. Day 18 - Seaborn.mp4 1GB
- 14. Day 13 - Numpy.mp4 1GB
- 12. Day 11 - Python for Data Analysis.mp4 1GB
- 6. Day 6 - Statistics for Data Analysis - Probability.mp4 1GB
- 5. Day 5 - Statistics for Data Analysis - Probability.mp4 1GB
- 17. Day 16 - Pandas.mp4 1GB
- 11. Day 10 - Python for Data Analysis.mp4 1GB
- 7. Day 7 - Statistics for Data Analysis - Probability.mp4 1GB
- 4. Day 4 - Statistics for Data Analysis - Probability.mp4 1012MB
- 1. Day 1 - Introduction to Data Science.mp4 888MB
- 13. Day 12 - Python for Data Analysis.mp4 855MB
- 15. Day 14 - Pandas.mp4 818MB
- 2. Day 2 - Introduction to Data Analytics.mp4 813MB
- 3. Day 3 - Statistics for Data Analysis - Scalar, Vectors and Matrix.mp4 810MB
- 16. Day 15 - Pandas.mp4 791MB
- 10. Day 9B - Python for Data Analysis.mp4 784MB
- 20. Day 19 A - Seaborn.mp4 587MB
- 21. Day 19 B - EDA.mp4 379MB
- 9. Day 9A - Statistics for Data Analysis - Statistical Hypothesis.mp4 251MB
- 23. Day 20 B - What Next.mp4 231MB
- 3.1 Machine _Learning Day 3.pdf 28MB
- 8.1 Machine _Learning Day 8.pdf 25MB
- 4.1 Machine _Learning Day 4.pdf 17MB
- 6.1 Machine _Learning Day 6.pdf 14MB
- 7.1 Machine _Learning Day 7.pdf 14MB
- 1.1 Machine _Learning Day 1.pdf 13MB
- 5.1 Machine _Learning Day 5.pdf 11MB
- 2.1 Machine _Learning Day 2.pdf 8MB
- 10.1 Machine _Learning - 9B.pdf 7MB
- 9.1 Machine _Learning 9A.pdf 6MB
- 14.1 Machine _Learning - 13.pdf 4MB
- 19.2 Machine _Learning - 18.pdf 4MB
- 15.2 Machine _Learning - 14.pdf 3MB
- 19.3 Seaborn.ipynb 2MB
- 12.1 images in pdf.pdf 2MB
- 21.2 LendingClub.ipynb 2MB
- 15.1 Machine _Learning - 14 - Practical.pdf 1MB
- 14.2 Practicals.zip 1MB
- 18.1 Machine _Learning - 17 - Practical.pdf 1MB
- 13.1 images in pdf.pdf 1013KB
- 16.1 Machine _Learning - 15 - Practical.pdf 998KB
- 6.2 Z Table 20210801.pdf 874KB
- 19.1 Machine _Learning - 18 - Practical.pdf 409KB
- 17.1 Machine _Learning - 16 - Practical.pdf 350KB
- 21.3 Machine _Learning - 19 B - Practical.pdf 247KB
- 22. Day 20 A - EDA Cont.srt 215KB
- 8. Day 8 - Statistics for Data Analysis - Statistical Hypothesis.srt 211KB
- 19. Day 18 - Seaborn.srt 203KB
- 3. Day 3 - Statistics for Data Analysis - Scalar, Vectors and Matrix.srt 198KB
- 6. Day 6 - Statistics for Data Analysis - Probability.srt 197KB
- 14. Day 13 - Numpy.srt 196KB
- 18. Day 17 - Pandas.srt 184KB
- 17. Day 16 - Pandas.srt 180KB
- 15. Day 14 - Pandas.srt 174KB
- 12. Day 11 - Python for Data Analysis.srt 174KB
- 11. Day 10 - Python for Data Analysis.srt 168KB
- 13. Day 12 - Python for Data Analysis.srt 166KB
- 4. Day 4 - Statistics for Data Analysis - Probability.srt 163KB
- 5. Day 5 - Statistics for Data Analysis - Probability.srt 162KB
- 1. Day 1 - Introduction to Data Science.srt 161KB
- 7. Day 7 - Statistics for Data Analysis - Probability.srt 160KB
- 10. Day 9B - Python for Data Analysis.srt 147KB
- 2. Day 2 - Introduction to Data Analytics.srt 147KB
- 16. Day 15 - Pandas.srt 120KB
- 20. Day 19 A - Seaborn.srt 100KB
- 15.3 Pandas practicals.zip 71KB
- 21. Day 19 B - EDA.srt 60KB
- 9. Day 9A - Statistics for Data Analysis - Statistical Hypothesis.srt 44KB
- 23. Day 20 B - What Next.srt 35KB
- 11.1 Python Notebook.zip 33KB
- 7.2 Reference Links.txt 284B
- 21.1 EDA Data .txt 84B