Udemy - Math for Machine Learning [720p - WEB HD - H264 - AAC]
- 收录时间:2021-04-24 21:19:03
- 文件大小:571MB
- 下载次数:1
- 最近下载:2021-04-24 21:19:03
- 磁力链接:
-
文件列表
- 16 - LDA Example 2.mp4 30MB
- 67 - Support Vector Classifier Example 1.mp4 24MB
- 22 - Maximizing the Log-Likelihood Function.mp4 23MB
- 15 - LDA Example 1.mp4 22MB
- 26 - Neural Network Model of the Output Functions.mp4 21MB
- 05 - Linear Algebra Solution to Least Squares Problem.mp4 20MB
- 04 - The Least Squares Method.mp4 19MB
- 55 - Maximal Margin Classifier Example 2.mp4 18MB
- 21 - The Multivariate Newton-Raphson Method.mp4 18MB
- 54 - Maximal Margin Classifier Example 1.mp4 16MB
- 23 - Logistic Regression Example.mp4 16MB
- 68 - Support Vector Classifier Example 2.mp4 16MB
- 45 - Proof 4.mp4 14MB
- 42 - Reformulating the Optimization Problem.mp4 13MB
- 20 - Estimating the Posterior Probability Function.mp4 13MB
- 11 - Modelling the Posterior Probability Functions.mp4 12MB
- 03 - Linear Regression.mp4 12MB
- 39 - Proof 1.mp4 12MB
- 63 - Solving the Convex Optimization Problem (Soft Margin).mp4 10MB
- 33 - Minimizing the Error Function Using Gradient Descent.mp4 10MB
- 13 - Estimating the Linear Discriminant Functions.mp4 10MB
- 38 - Definitions of Separating Hyperplane and Margin.mp4 9MB
- 12 - Linear Discriminant Functions.mp4 9MB
- 31 - Error Function for Binary Classification.mp4 9MB
- 71 - Enlarging the Feature Space.mp4 9MB
- 46 - Proof 5.mp4 9MB
- 44 - Proof 3.mp4 8MB
- 72 - The Kernel Trick.mp4 8MB
- 34 - Backpropagation Equations.mp4 7MB
- 06 - Example Linear Regression.mp4 7MB
- 28 - Choosing Activation Functions.mp4 7MB
- 32 - Error Function for Multiclass Classification.mp4 6MB
- 60 - Formulating the Optimization Problem.mp4 6MB
- 58 - Slack Variables Points on Correct Side of Hyperplane.mp4 6MB
- 02 - Course Introduction.mp4 6MB
- 57 - Support Vector Classifier.mp4 6MB
- 40 - Maximizing the Margin.mp4 6MB
- 10 - The Posterior Probability Functions.mp4 6MB
- 36 - Summary Artificial Neural Networks.mp4 6MB
- 01 - Course Promo.mp4 5MB
- 14 - Classifying Data Points Using Linear Discriminant Functions.mp4 5MB
- 17 - Summary Linear Discriminant Analysis.mp4 5MB
- 50 - Solving the Dual Problem.mp4 5MB
- 19 - Logistic Regression Model of the Posterior Probability Function.mp4 4MB
- 24 - Summary Logistic Regression.mp4 4MB
- 73 - Summary Support Vector Machine Classifier.mp4 4MB
- 62 - A Convex Optimization Problem.mp4 4MB
- 37 - Maximal Margin Classifier.mp4 4MB
- 29 - Estimating the Output Functions.mp4 3MB
- 30 - Error Function for Regression.mp4 3MB
- 64 - The Coefficients for the Soft Margin Hyperplane.mp4 3MB
- 48 - KKT Conditions.mp4 3MB
- 53 - Classifying Test Points.mp4 3MB
- 65 - Classifying Test Points (Soft Margin).mp4 3MB
- 66 - The Support Vectors (Soft Margin).mp4 3MB
- 35 - Summary of Backpropagation.mp4 3MB
- 59 - Slack Variables Points on Wrong Side of Hyperplane.mp4 2MB
- 69 - Summary Support Vector Classifier.mp4 2MB
- 49 - Primal and Dual Problems.mp4 2MB
- 43 - Proof 2.mp4 2MB
- 70 - Support Vector Machine Classifier.mp4 2MB
- 47 - Solving the Convex Optimization Problem.mp4 2MB
- 07 - Summary Linear Regression.mp4 2MB
- 56 - Summary Maximal Margin Classifier.mp4 2MB
- 27 - Forward Propagation.mp4 2MB
- 41 - Definition of Maximal Margin Classifier.mp4 2MB
- 08 - Classification.mp4 2MB
- 18 - Logistic Regression.mp4 2MB
- 52 - The Support Vectors.mp4 1MB
- 61 - Definition of Support Vector Classifier.mp4 1MB
- 09 - Linear Discriminant Analysis.mp4 967KB
- 25 - Artificial Neural Networks.mp4 779KB
- 51 - The Coefficients for the Maximal Margin Hyperplane.mp4 766KB
- TutsGalaxy.com.txt 41B