[] Udemy - The Data Science Course 2019 Complete Data Science Bootcamp
- 收录时间:2019-06-13 23:32:41
- 文件大小:14GB
- 下载次数:15
- 最近下载:2020-09-15 08:08:06
- 磁力链接:
-
文件列表
- 16. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.mp4 160MB
- 12. Probability Distributions/29. A Practical Example of Probability Distributions.mp4 158MB
- 11. Bayesian Inference/22. A Practical Example of Bayesian Inference.mp4 155MB
- 40. Part 6 Mathematics/16. Why is Linear Algebra Useful.mp4 144MB
- 5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.mp4 138MB
- 10. Combinatorics/20. A Practical Example of Combinatorics.mp4 134MB
- 3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 127MB
- 5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.mp4 125MB
- 5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.mp4 124MB
- 53. Software Integration/5. Taking a Closer Look at APIs.mp4 116MB
- 20. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.mp4 113MB
- 2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.mp4 109MB
- 53. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.mp4 104MB
- 6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.mp4 104MB
- 51. Deep Learning - Business Case Example/4. Business Case Preprocessing.mp4 103MB
- 19. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.mp4 103MB
- 5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.mp4 99MB
- 13. Probability in Other Fields/1. Probability in Finance.mp4 99MB
- 35. Advanced Statistical Methods - Practical Example Linear Regression/1. Practical Example Linear Regression (Part 1).mp4 97MB
- 12. Probability Distributions/3. Types of Probability Distributions.mp4 92MB
- 20. Statistics - Hypothesis Testing/1. Null vs Alternative Hypothesis.mp4 92MB
- 5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.mp4 90MB
- 51. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.mp4 88MB
- 36. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.mp4 87MB
- 9. Part 2 Probability/1. The Basic Probability Formula.mp4 86MB
- 2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.mp4 81MB
- 4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.mp4 81MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.mp4 81MB
- 12. Probability Distributions/15. Characteristics of Continuous Distributions.mp4 80MB
- 18. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.mp4 78MB
- 13. Probability in Other Fields/2. Probability in Statistics.mp4 77MB
- 51. Deep Learning - Business Case Example/6. Creating a Data Provider.mp4 76MB
- 9. Part 2 Probability/3. Computing Expected Values.mp4 76MB
- 5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.mp4 76MB
- 22. Part 4 Introduction to Python/3. Why Python.mp4 75MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.mp4 75MB
- 38. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.mp4 74MB
- 12. Probability Distributions/1. Fundamentals of Probability Distributions.mp4 73MB
- 8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.mp4 73MB
- 53. Software Integration/9. Software Integration - Explained.mp4 73MB
- 15. Statistics - Descriptive Statistics/1. Types of Data.mp4 73MB
- 37. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.mp4 72MB
- 18. Statistics - Inferential Statistics Confidence Intervals/12. Confidence intervals. Two means. Dependent samples.mp4 70MB
- 21. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.mp4 69MB
- 53. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.mp4 69MB
- 2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.mp4 68MB
- 12. Probability Distributions/11. Discrete Distributions The Binomial Distribution.mp4 66MB
- 2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 65MB
- 13. Probability in Other Fields/3. Probability in Data Science.mp4 63MB
- 17. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.mp4 63MB
- 50. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Results and Testing.mp4 63MB
- 1. Part 1 Introduction/2. What Does the Course Cover.mp4 62MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/3. Checking the Content of the Data Set.mp4 62MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/7. Dropping a Column from a DataFrame in Python.mp4 62MB
- 9. Part 2 Probability/5. Frequency.mp4 62MB
- 17. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.mp4 62MB
- 43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).mp4 61MB
- 53. Software Integration/7. Communication between Software Products through Text Files.mp4 60MB
- 11. Bayesian Inference/20. Bayes' Law.mp4 60MB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.mp4 59MB
- 58. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.mp4 59MB
- 18. Statistics - Inferential Statistics Confidence Intervals/10. Margin of Error.mp4 59MB
- 9. Part 2 Probability/7. Events and Their Complements.mp4 59MB
- 52. Deep Learning - Conclusion/3. An overview of CNNs.mp4 59MB
- 22. Part 4 Introduction to Python/1. Introduction to Programming.mp4 59MB
- 12. Probability Distributions/13. Discrete Distributions The Poisson Distribution.mp4 58MB
- 14. Part 3 Statistics/1. Population and Sample.mp4 58MB
- 35. Advanced Statistical Methods - Practical Example Linear Regression/8. Practical Example Linear Regression (Part 5).mp4 58MB
- 32. Advanced Statistical Methods - Linear regression with StatsModels/1. The Linear Regression Model.mp4 57MB
- 10. Combinatorics/11. Solving Combinations.mp4 57MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.mp4 57MB
- 11. Bayesian Inference/7. Union of Sets.mp4 57MB
- 18. Statistics - Inferential Statistics Confidence Intervals/5. Confidence Interval Clarifications.mp4 57MB
- 58. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.mp4 57MB
- 50. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.mp4 56MB
- 38. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).mp4 56MB
- 35. Advanced Statistical Methods - Practical Example Linear Regression/6. Practical Example Linear Regression (Part 4).mp4 56MB
- 20. Statistics - Hypothesis Testing/10. p-value.mp4 56MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/18. Dealing with Categorical Data - Dummy Variables.mp4 56MB
- 42. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 56MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/3. Adjusted R-Squared.mp4 55MB
- 15. Statistics - Descriptive Statistics/3. Levels of Measurement.mp4 54MB
- 7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.mp4 54MB
- 57. Case Study - Loading the 'absenteeism_module'/3. Deploying the 'absenteeism_module' - Part II.mp4 54MB
- 20. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.mp4 54MB
- 2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.mp4 54MB
- 11. Bayesian Inference/1. Sets and Events.mp4 53MB
- 37. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.mp4 53MB
- 51. Deep Learning - Business Case Example/7. Business Case Model Outline.mp4 53MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/5. Splitting the Data for Training and Testing.mp4 53MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/8. Interpreting the Coefficients for Our Problem.mp4 52MB
- 54. Case Study - What's Next in the Course/1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 52MB
- 38. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.mp4 52MB
- 22. Part 4 Introduction to Python/7. Installing Python and Jupyter.mp4 51MB
- 49. Deep Learning - Preprocessing/3. Standardization.mp4 51MB
- 15. Statistics - Descriptive Statistics/22. Variance.mp4 51MB
- 20. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.mp4 50MB
- 18. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.mp4 50MB
- 17. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.mp4 50MB
- 40. Part 6 Mathematics/5. Linear Algebra and Geometry.mp4 50MB
- 32. Advanced Statistical Methods - Linear regression with StatsModels/13. Decomposition of Variability.mp4 50MB
- 40. Part 6 Mathematics/15. Dot Product of Matrices.mp4 49MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/19. Train - Test Split Explained.mp4 49MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/12. Testing the Model We Created.mp4 49MB
- 1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.mp4 49MB
- 12. Probability Distributions/17. Continuous Distributions The Normal Distribution.mp4 48MB
- 12. Probability Distributions/19. Continuous Distributions The Standard Normal Distribution.mp4 48MB
- 17. Statistics - Inferential Statistics Fundamentals/13. Estimators and Estimates.mp4 48MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.mp4 48MB
- 44. Deep Learning - TensorFlow Introduction/3. TensorFlow Outline and Logic.mp4 48MB
- 12. Probability Distributions/27. Continuous Distributions The Logistic Distribution.mp4 47MB
- 50. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.mp4 47MB
- 35. Advanced Statistical Methods - Practical Example Linear Regression/2. Practical Example Linear Regression (Part 2).mp4 46MB
- 11. Bayesian Inference/13. The Conditional Probability Formula.mp4 46MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/2. Creating the Targets for the Logistic Regression.mp4 46MB
- 11. Bayesian Inference/3. Ways Sets Can Interact.mp4 45MB
- 15. Statistics - Descriptive Statistics/24. Standard Deviation and Coefficient of Variation.mp4 45MB
- 42. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.mp4 45MB
- 52. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.mp4 45MB
- 32. Advanced Statistical Methods - Linear regression with StatsModels/11. How to Interpret the Regression Table.mp4 45MB
- 32. Advanced Statistical Methods - Linear regression with StatsModels/8. First Regression in Python.mp4 45MB
- 39. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.mp4 45MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/16. Preparing the Deployment of the Model through a Module.mp4 44MB
- 22. Part 4 Introduction to Python/5. Why Jupyter.mp4 44MB
- 38. Advanced Statistical Methods - K-Means Clustering/6. How to Choose the Number of Clusters.mp4 44MB
- 20. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.mp4 44MB
- 50. Deep Learning - Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.mp4 44MB
- 10. Combinatorics/9. Solving Variations without Repetition.mp4 43MB
- 38. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).mp4 43MB
- 42. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.mp4 43MB
- 11. Bayesian Inference/18. The Multiplication Law.mp4 43MB
- 5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.mp4 43MB
- 10. Combinatorics/3. Permutations and How to Use Them.mp4 43MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/13. A3 Normality and Homoscedasticity.mp4 43MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/6. Fitting the Model and Assessing its Accuracy.mp4 42MB
- 51. Deep Learning - Business Case Example/8. Business Case Optimization.mp4 42MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 41MB
- 32. Advanced Statistical Methods - Linear regression with StatsModels/17. R-Squared.mp4 41MB
- 54. Case Study - What's Next in the Course/3. Introducing the Data Set.mp4 41MB
- 58. Case Study - Analyzing the Predicted Outputs in Tableau/6. Analyzing Transportation Expense vs Probability in Tableau.mp4 41MB
- 32. Advanced Statistical Methods - Linear regression with StatsModels/7. Python Packages Installation.mp4 41MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.mp4 41MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/10. Interpreting the Coefficients of the Logistic Regression.mp4 40MB
- 20. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.mp4 40MB
- 12. Probability Distributions/25. Continuous Distributions The Exponential Distribution.mp4 40MB
- 15. Statistics - Descriptive Statistics/14. Cross Tables and Scatter Plots.mp4 40MB
- 52. Deep Learning - Conclusion/1. Summary on What You've Learned.mp4 40MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.mp4 40MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.mp4 40MB
- 51. Deep Learning - Business Case Example/3. The Importance of Working with a Balanced Dataset.mp4 39MB
- 42. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.mp4 39MB
- 10. Combinatorics/17. Combinatorics in Real-Life The Lottery.mp4 39MB
- 54. Case Study - What's Next in the Course/2. The Business Task.mp4 39MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/14. Feature Scaling (Standardization).mp4 39MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/7. Creating a Summary Table with the Coefficients and Intercept.mp4 39MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.mp4 39MB
- 10. Combinatorics/13. Symmetry of Combinations.mp4 39MB
- 10. Combinatorics/19. A Recap of Combinatorics.mp4 39MB
- 44. Deep Learning - TensorFlow Introduction/6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 38MB
- 15. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.mp4 38MB
- 36. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.mp4 38MB
- 42. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 38MB
- 40. Part 6 Mathematics/13. Transpose of a Matrix.mp4 38MB
- 38. Advanced Statistical Methods - K-Means Clustering/8. Pros and Cons of K-Means Clustering.mp4 38MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/13. Saving the Model and Preparing it for Deployment.mp4 37MB
- 44. Deep Learning - TensorFlow Introduction/8. Basic NN Example with TF Model Output.mp4 37MB
- 42. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.mp4 37MB
- 15. Statistics - Descriptive Statistics/17. Mean, median and mode.mp4 37MB
- 5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).mp4 37MB
- 20. Statistics - Hypothesis Testing/18. Test for the mean. Independent samples (Part 2).mp4 36MB
- 51. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.vtt 36MB
- 51. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.mp4 36MB
- 37. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.mp4 36MB
- 10. Combinatorics/5. Simple Operations with Factorials.mp4 36MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/11. A2 No Endogeneity.mp4 36MB
- 18. Statistics - Inferential Statistics Confidence Intervals/6. Student's T Distribution.mp4 35MB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.mp4 35MB
- 43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).mp4 35MB
- 11. Bayesian Inference/15. The Law of Total Probability.mp4 35MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/15. Feature Selection through Standardization of Weights.mp4 35MB
- 11. Bayesian Inference/11. Dependence and Independence of Sets.mp4 35MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/3. Simple Linear Regression with sklearn.mp4 35MB
- 36. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.mp4 35MB
- 12. Probability Distributions/9. Discrete Distributions The Bernoulli Distribution.mp4 34MB
- 10. Combinatorics/7. Solving Variations with Repetition.mp4 34MB
- 40. Part 6 Mathematics/3. Scalars and Vectors.mp4 34MB
- 30. Python - Advanced Python Tools/1. Object Oriented Programming.mp4 34MB
- 40. Part 6 Mathematics/1. What is a matrix.mp4 34MB
- 26. Python - Conditional Statements/4. The ELIF Statement.mp4 33MB
- 10. Combinatorics/15. Solving Combinations with Separate Sample Spaces.mp4 33MB
- 36. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.mp4 33MB
- 46. Deep Learning - Overfitting/3. What is Validation.mp4 33MB
- 40. Part 6 Mathematics/10. Addition and Subtraction of Matrices.mp4 33MB
- 44. Deep Learning - TensorFlow Introduction/7. Basic NN Example with TF Loss Function and Gradient Descent.mp4 33MB
- 36. Advanced Statistical Methods - Logistic Regression/9. What do the Odds Actually Mean.mp4 32MB
- 36. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.mp4 32MB
- 18. Statistics - Inferential Statistics Confidence Intervals/8. Confidence Intervals; Population Variance Unknown; t-score.mp4 32MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 32MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/14. A4 No Autocorrelation.mp4 32MB
- 41. Part 7 Deep Learning/1. What to Expect from this Part.mp4 31MB
- 46. Deep Learning - Overfitting/1. What is Overfitting.mp4 31MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/8. Calculating the Adjusted R-Squared in sklearn.mp4 31MB
- 28. Python - Sequences/5. List Slicing.mp4 31MB
- 23. Python - Variables and Data Types/5. Python Strings.mp4 31MB
- 22. Part 4 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.mp4 31MB
- 36. Advanced Statistical Methods - Logistic Regression/7. Understanding Logistic Regression Tables.mp4 31MB
- 38. Advanced Statistical Methods - K-Means Clustering/9. To Standardize or not to Standardize.mp4 30MB
- 25. Python - Other Python Operators/3. Logical and Identity Operators.mp4 30MB
- 20. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).mp4 30MB
- 5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.mp4 30MB
- 39. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.mp4 30MB
- 5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).mp4 30MB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.mp4 30MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.mp4 30MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/10. Feature Selection (F-regression).mp4 30MB
- 15. Statistics - Descriptive Statistics/30. Correlation Coefficient.mp4 29MB
- 48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 29MB
- 39. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.mp4 29MB
- 49. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.mp4 29MB
- 18. Statistics - Inferential Statistics Confidence Intervals/14. Confidence intervals. Two means. Independent samples (Part 1).mp4 29MB
- 42. Deep Learning - Introduction to Neural Networks/3. Training the Model.mp4 29MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/16. A5 No Multicollinearity.mp4 29MB
- 48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.mp4 29MB
- 42. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).mp4 28MB
- 32. Advanced Statistical Methods - Linear regression with StatsModels/15. What is the OLS.mp4 28MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.mp4 28MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/4. Introduction to Terms with Multiple Meanings.mp4 28MB
- 49. Deep Learning - Preprocessing/1. Preprocessing Introduction.mp4 28MB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.mp4 28MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1. Exploring the Problem with a Machine Learning Mindset.mp4 28MB
- 15. Statistics - Descriptive Statistics/27. Covariance.mp4 27MB
- 38. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.mp4 27MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/1. What is sklearn and How is it Different from Other Packages.mp4 27MB
- 12. Probability Distributions/21. Continuous Distributions The Students' T Distribution.mp4 27MB
- 36. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.mp4 27MB
- 11. Bayesian Inference/5. Intersection of Sets.mp4 27MB
- 18. Statistics - Inferential Statistics Confidence Intervals/16. Confidence intervals. Two means. Independent samples (Part 2).mp4 27MB
- 40. Part 6 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 27MB
- 48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 26MB
- 12. Probability Distributions/23. Continuous Distributions The Chi-Squared Distribution.mp4 26MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/16. Predicting with the Standardized Coefficients.mp4 26MB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.mp4 26MB
- 50. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.mp4 26MB
- 15. Statistics - Descriptive Statistics/8. Numerical Variables - Frequency Distribution Table.mp4 26MB
- 11. Bayesian Inference/16. The Additive Rule.mp4 26MB
- 51. Deep Learning - Business Case Example/9. Business Case Interpretation.mp4 26MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.mp4 26MB
- 57. Case Study - Loading the 'absenteeism_module'/2. Deploying the 'absenteeism_module' - Part I.mp4 25MB
- 11. Bayesian Inference/9. Mutually Exclusive Sets.mp4 25MB
- 23. Python - Variables and Data Types/1. Variables.mp4 25MB
- 52. Deep Learning - Conclusion/5. An Overview of RNNs.mp4 25MB
- 46. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.mp4 25MB
- 42. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.mp4 25MB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.mp4 25MB
- 46. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.mp4 25MB
- 28. Python - Sequences/7. Dictionaries.mp4 25MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/20. Making Predictions with the Linear Regression.mp4 25MB
- 43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).mp4 24MB
- 12. Probability Distributions/7. Discrete Distributions The Uniform Distribution.mp4 24MB
- 46. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.mp4 24MB
- 40. Part 6 Mathematics/14. Dot Product.mp4 24MB
- 27. Python - Python Functions/2. How to Create a Function with a Parameter.mp4 24MB
- 35. Advanced Statistical Methods - Practical Example Linear Regression/4. Practical Example Linear Regression (Part 3).mp4 24MB
- 42. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.mp4 23MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/2. Importing the Absenteeism Data in Python.mp4 23MB
- 36. Advanced Statistical Methods - Logistic Regression/6. An Invaluable Coding Tip.mp4 23MB
- 17. Statistics - Inferential Statistics Fundamentals/11. Standard error.mp4 23MB
- 12. Probability Distributions/5. Characteristics of Discrete Distributions.mp4 23MB
- 42. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.mp4 23MB
- 50. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.mp4 23MB
- 40. Part 6 Mathematics/8. What is a Tensor.mp4 23MB
- 17. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.mp4 23MB
- 48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).mp4 22MB
- 36. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.mp4 22MB
- 5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.mp4 22MB
- 27. Python - Python Functions/7. Built-in Functions in Python.mp4 22MB
- 28. Python - Sequences/1. Lists.mp4 22MB
- 28. Python - Sequences/3. Using Methods.mp4 22MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/7. OLS Assumptions.mp4 22MB
- 47. Deep Learning - Initialization/1. What is Initialization.mp4 22MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.vtt 22MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.mp4 22MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/1. Multiple Linear Regression.mp4 22MB
- 38. Advanced Statistical Methods - K-Means Clustering/4. Clustering Categorical Data.mp4 21MB
- 46. Deep Learning - Overfitting/5. N-Fold Cross Validation.mp4 21MB
- 43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).mp4 21MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/4. Standardizing the Data.mp4 21MB
- 44. Deep Learning - TensorFlow Introduction/5. Types of File Formats, supporting Tensors.mp4 20MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.mp4 20MB
- 52. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.mp4 20MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/7. Multiple Linear Regression with sklearn.mp4 20MB
- 18. Statistics - Inferential Statistics Confidence Intervals/18. Confidence intervals. Two means. Independent samples (Part 3).mp4 20MB
- 30. Python - Advanced Python Tools/7. Importing Modules in Python.mp4 20MB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.mp4 19MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/2. How are Going to Approach this Section.mp4 19MB
- 15. Statistics - Descriptive Statistics/19. Skewness.mp4 19MB
- 24. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.mp4 19MB
- 50. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Relevant Packages.mp4 19MB
- 49. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.mp4 19MB
- 30. Python - Advanced Python Tools/5. What is the Standard Library.mp4 18MB
- 42. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.mp4 18MB
- 50. Deep Learning - Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.mp4 18MB
- 44. Deep Learning - TensorFlow Introduction/4. Actual Introduction to TensorFlow.mp4 17MB
- 31. Part 5 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.mp4 17MB
- 47. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 17MB
- 36. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.mp4 17MB
- 23. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.mp4 17MB
- 29. Python - Iterations/8. How to Iterate over Dictionaries.mp4 17MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/18. Underfitting and Overfitting.mp4 17MB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/3. Selecting the Inputs for the Logistic Regression.mp4 17MB
- 28. Python - Sequences/6. Tuples.mp4 17MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/6. Test for Significance of the Model (F-Test).mp4 16MB
- 48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.mp4 16MB
- 10. Combinatorics/1. Fundamentals of Combinatorics.mp4 16MB
- 29. Python - Iterations/6. Conditional Statements and Loops.mp4 16MB
- 27. Python - Python Functions/5. Conditional Statements and Functions.mp4 16MB
- 17. Statistics - Inferential Statistics Fundamentals/1. Introduction.mp4 16MB
- 29. Python - Iterations/3. While Loops and Incrementing.mp4 15MB
- 27. Python - Python Functions/3. Defining a Function in Python - Part II.mp4 15MB
- 32. Advanced Statistical Methods - Linear regression with StatsModels/3. Correlation vs Regression.mp4 15MB
- 37. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.mp4 15MB
- 44. Deep Learning - TensorFlow Introduction/1. How to Install TensorFlow.mp4 15MB
- 47. Deep Learning - Initialization/2. Types of Simple Initializations.mp4 14MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.mp4 14MB
- 22. Part 4 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 14MB
- 15. Statistics - Descriptive Statistics/11. The Histogram.mp4 14MB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.mp4 14MB
- 26. Python - Conditional Statements/1. The IF Statement.mp4 14MB
- 26. Python - Conditional Statements/3. The ELSE Statement.mp4 14MB
- 50. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.mp4 13MB
- 33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/9. A1 Linearity.mp4 13MB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.mp4 13MB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/12. Creating a Summary Table with p-values.mp4 12MB
- 32. Advanced Statistical Methods - Linear regression with StatsModels/10. Using Seaborn for Graphs.mp4 12MB
- 51. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.mp4 12MB
- 49. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.mp4 12MB
- 29. Python - Iterations/1. For Loops.mp4 12MB
- 29. Python - Iterations/4. Lists with the range() Function.mp4 11MB
- 22. Part 4 Introduction to Python/11. Python 2 vs Python 3.mp4 11MB
- 26. Python - Conditional Statements/5. A Note on Boolean Values.mp4 11MB
- 51. Deep Learning - Business Case Example/10. Business Case Testing the Model.mp4 11MB
- 40. Part 6 Mathematics/12. Errors when Adding Matrices.mp4 11MB
- 48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.mp4 11MB
- 25. Python - Other Python Operators/1. Comparison Operators.mp4 10MB
- 38. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.mp4 10MB
- 29. Python - Iterations/7. Conditional Statements, Functions, and Loops.mp4 9MB
- 48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.mp4 9MB
- 12. Probability Distributions/29.1 FIFA19 (post).csv.csv 9MB
- 12. Probability Distributions/29.3 FIFA19.csv.csv 9MB
- 30. Python - Advanced Python Tools/3. Modules and Packages.mp4 9MB
- 27. Python - Python Functions/4. How to Use a Function within a Function.mp4 8MB
- 27. Python - Python Functions/1. Defining a Function in Python.mp4 8MB
- 27. Python - Python Functions/6. Functions Containing a Few Arguments.mp4 8MB
- 2. The Field of Data Science - The Various Data Science Disciplines/7.2 365_DataScience.png.png 7MB
- 2. The Field of Data Science - The Various Data Science Disciplines/9.1 365_DataScience.png.png 7MB
- 24. Python - Basic Python Syntax/12. Structuring with Indentation.mp4 7MB
- 24. Python - Basic Python Syntax/3. The Double Equality Sign.mp4 6MB
- 24. Python - Basic Python Syntax/10. Indexing Elements.mp4 6MB
- 32. Advanced Statistical Methods - Linear regression with StatsModels/5. Geometrical Representation of the Linear Regression Model.mp4 5MB
- 24. Python - Basic Python Syntax/7. Add Comments.mp4 5MB
- 24. Python - Basic Python Syntax/5. How to Reassign Values.mp4 4MB
- 24. Python - Basic Python Syntax/9. Understanding Line Continuation.mp4 2MB
- 22. Part 4 Introduction to Python/11.1 Python Introduction - Course Notes.pdf.pdf 2MB
- 23. Python - Variables and Data Types/1.1 Python Introduction - Course Notes.pdf.pdf 2MB
- 19. Statistics - Practical Example Inferential Statistics/2.1 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx 2MB
- 19. Statistics - Practical Example Inferential Statistics/1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx 2MB
- 19. Statistics - Practical Example Inferential Statistics/2.2 3.17.Practical-example.Confidence-intervals-exercise.xlsx.xlsx 2MB
- 20. Statistics - Hypothesis Testing/10.1 Online p-value calculator.pdf.pdf 1MB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1.1 Course Notes - Section 6.pdf.pdf 936KB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2.1 Course Notes - Section 6.pdf.pdf 936KB
- 11. Bayesian Inference/22.1 CDS_2017-2018 Hamilton.pdf.pdf 845KB
- 51. Deep Learning - Business Case Example/1.1 Audiobooks_data.csv.csv 711KB
- 20. Statistics - Hypothesis Testing/1.1 Course notes_hypothesis_testing.pdf.pdf 648KB
- 20. Statistics - Hypothesis Testing/4.1 Course notes_hypothesis_testing.pdf.pdf 648KB
- 43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.1 Shortcuts-for-Jupyter.pdf.pdf 619KB
- 44. Deep Learning - TensorFlow Introduction/1.1 Shortcuts-for-Jupyter.pdf.pdf 619KB
- 44. Deep Learning - TensorFlow Introduction/4.1 Shortcuts-for-Jupyter.pdf.pdf 619KB
- 42. Deep Learning - Introduction to Neural Networks/1.1 Course Notes - Section 2.pdf.pdf 578KB
- 42. Deep Learning - Introduction to Neural Networks/3.1 Course Notes - Section 2.pdf.pdf 578KB
- 14. Part 3 Statistics/1.2 Course notes_descriptive_statistics.pdf.pdf 482KB
- 15. Statistics - Descriptive Statistics/1.2 Course notes_descriptive_statistics.pdf.pdf 482KB
- 12. Probability Distributions/1.1 Course Notes - Probability Distributions.pdf.pdf 448KB
- 11. Bayesian Inference/1.1 Course Notes - Bayesian Inference.pdf.pdf 386KB
- 17. Statistics - Inferential Statistics Fundamentals/1.1 Course notes_inferential statistics.pdf.pdf 382KB
- 17. Statistics - Inferential Statistics Fundamentals/2.1 Course notes_inferential statistics.pdf.pdf 382KB
- 9. Part 2 Probability/1.1 Course Notes - Basic Probability.pdf.pdf 371KB
- 12. Probability Distributions/15.1 Solving Integrals.pdf.pdf 344KB
- 2. The Field of Data Science - The Various Data Science Disciplines/5.1 365_DataScience_Diagram.pdf.pdf 323KB
- 2. The Field of Data Science - The Various Data Science Disciplines/7.1 365_DataScience_Diagram.pdf.pdf 323KB
- 1. Part 1 Introduction/3.2 FAQ_The_Data_Science_Course.pdf.pdf 306KB
- 15. Statistics - Descriptive Statistics/13.2 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf 289KB
- 15. Statistics - Descriptive Statistics/7.2 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf 289KB
- 10. Combinatorics/20.1 Additional Exercises Combinatorics Solutions.pdf.pdf 246KB
- 10. Combinatorics/1.1 Course Notes - Combinatorics.pdf.pdf 226KB
- 10. Combinatorics/11.1 Combinations With Repetition.pdf.pdf 207KB
- 45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf 182KB
- 16. Statistics - Practical Example Descriptive Statistics/1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx 147KB
- 16. Statistics - Practical Example Descriptive Statistics/2.1 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx 146KB
- 12. Probability Distributions/13.1 Poisson - Expected Value and Variance.pdf.pdf 146KB
- 12. Probability Distributions/17.1 Normal Distribution - Exp and Var.pdf.pdf 144KB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/1.1 data_preprocessing_homework.pdf.pdf 134KB
- 16. Statistics - Practical Example Descriptive Statistics/2.2 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx 120KB
- 10. Combinatorics/20.2 Additional Exercises Combinatorics.pdf.pdf 107KB
- 10. Combinatorics/13.1 Symmetry Explained.pdf.pdf 85KB
- 21. Statistics - Practical Example Hypothesis Testing/1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx 52KB
- 21. Statistics - Practical Example Hypothesis Testing/2.2 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx 44KB
- 21. Statistics - Practical Example Hypothesis Testing/2.1 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx 43KB
- 42. Deep Learning - Introduction to Neural Networks/21.1 GD-function-example.xlsx.xlsx 42KB
- 15. Statistics - Descriptive Statistics/7.1 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx 41KB
- 15. Statistics - Descriptive Statistics/16.1 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx 40KB
- 15. Statistics - Descriptive Statistics/19.1 2.8. Skewness_lesson.xlsx.xlsx 35KB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/1.3 Absenteeism_data.csv.csv 32KB
- 15. Statistics - Descriptive Statistics/5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx 31KB
- 14. Part 3 Statistics/1.1 Statistics Glossary.xlsx.xlsx 30KB
- 15. Statistics - Descriptive Statistics/29.2 2.11. Covariance_exercise_solution.xlsx.xlsx 30KB
- 15. Statistics - Descriptive Statistics/32.1 2.12. Correlation_exercise_solution.xlsx.xlsx 29KB
- 15. Statistics - Descriptive Statistics/32.2 2.12. Correlation_exercise.xlsx.xlsx 29KB
- 56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1.1 Absenteeism_preprocessed.csv.csv 29KB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/1.2 df_preprocessed.csv.csv 29KB
- 15. Statistics - Descriptive Statistics/14.1 2.6. Cross table and scatter plot.xlsx.xlsx 26KB
- 18. Statistics - Inferential Statistics Confidence Intervals/3.1 3.9.The-z-table.xlsx.xlsx 26KB
- 18. Statistics - Inferential Statistics Confidence Intervals/4.1 3.9.The-z-table.xlsx.xlsx 26KB
- 15. Statistics - Descriptive Statistics/27.1 2.11. Covariance_lesson.xlsx.xlsx 25KB
- 17. Statistics - Inferential Statistics Fundamentals/8.2 3.4.Standard-normal-distribution-exercise-solution.xlsx.xlsx 24KB
- 1. Part 1 Introduction/3. Download All Resources and Important FAQ.html 21KB
- 15. Statistics - Descriptive Statistics/29.1 2.11. Covariance_exercise.xlsx.xlsx 20KB
- 12. Probability Distributions/29.6 Daily Views (post).xlsx.xlsx 20KB
- 15. Statistics - Descriptive Statistics/1.1 Glossary.xlsx.xlsx 20KB
- 15. Statistics - Descriptive Statistics/21.1 2.8. Skewness_exercise_solution.xlsx.xlsx 20KB
- 36. Advanced Statistical Methods - Logistic Regression/11.2 Bank_data.csv.csv 20KB
- 36. Advanced Statistical Methods - Logistic Regression/13.2 Bank_data.csv.csv 20KB
- 36. Advanced Statistical Methods - Logistic Regression/16.2 Bank_data.csv.csv 20KB
- 36. Advanced Statistical Methods - Logistic Regression/8.1 Bank_data.csv.csv 20KB
- 17. Statistics - Inferential Statistics Fundamentals/2.2 3.2. What is a distribution_lesson.xlsx.xlsx 19KB
- 15. Statistics - Descriptive Statistics/11.1 2.5. The Histogram_lesson.xlsx.xlsx 19KB
- 16. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.vtt 18KB
- 12. Probability Distributions/29. A Practical Example of Probability Distributions.vtt 18KB
- 11. Bayesian Inference/22. A Practical Example of Bayesian Inference.vtt 17KB
- 15. Statistics - Descriptive Statistics/13.1 2.5.The-Histogram-exercise-solution.xlsx.xlsx 17KB
- 15. Statistics - Descriptive Statistics/16.2 2.6. Cross table and scatter plot_exercise.xlsx.xlsx 16KB
- 18. Statistics - Inferential Statistics Confidence Intervals/8.2 3.11. The t-table.xlsx.xlsx 16KB
- 12. Probability Distributions/29.4 Customers_Membership (post).xlsx.xlsx 16KB
- 15. Statistics - Descriptive Statistics/13.3 2.5.The-Histogram-exercise.xlsx.xlsx 15KB
- 15. Statistics - Descriptive Statistics/7.3 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx 15KB
- 20. Statistics - Hypothesis Testing/12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx 15KB
- 20. Statistics - Hypothesis Testing/15.2 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx 14KB
- 18. Statistics - Inferential Statistics Confidence Intervals/13.1 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx 14KB
- 18. Statistics - Inferential Statistics Confidence Intervals/13.2 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx 14KB
- 15. Statistics - Descriptive Statistics/10.1 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx 13KB
- 35. Advanced Statistical Methods - Practical Example Linear Regression/1. Practical Example Linear Regression (Part 1).vtt 13KB
- 20. Statistics - Hypothesis Testing/15.1 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx 13KB
- 20. Statistics - Hypothesis Testing/13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx 13KB
- 15. Statistics - Descriptive Statistics/26.1 2.10. Standard deviation and coefficient of variation_exercise_solution.xlsx.xlsx 12KB
- 10. Combinatorics/20. A Practical Example of Combinatorics.vtt 12KB
- 17. Statistics - Inferential Statistics Fundamentals/8.1 3.4.Standard-normal-distribution-exercise.xlsx.xlsx 12KB
- 19. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.vtt 12KB
- 15. Statistics - Descriptive Statistics/10.2 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx 12KB
- 51. Deep Learning - Business Case Example/4. Business Case Preprocessing.vtt 12KB
- 15. Statistics - Descriptive Statistics/8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx 11KB
- 20. Statistics - Hypothesis Testing/20.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx.xlsx 11KB
- 15. Statistics - Descriptive Statistics/18.2 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx 11KB
- 20. Statistics - Hypothesis Testing/13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx 11KB
- 15. Statistics - Descriptive Statistics/26.2 2.10. Standard deviation and coefficient of variation_exercise.xlsx.xlsx 11KB
- 20. Statistics - Hypothesis Testing/17.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx.xlsx 11KB
- 20. Statistics - Hypothesis Testing/9.2 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx 11KB
- 18. Statistics - Inferential Statistics Confidence Intervals/3.2 3.9. Population variance known, z-score_lesson.xlsx.xlsx 11KB
- 18. Statistics - Inferential Statistics Confidence Intervals/4.3 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx 11KB
- 18. Statistics - Inferential Statistics Confidence Intervals/9.1 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx 11KB
- 15. Statistics - Descriptive Statistics/23.2 2.9. Variance_exercise_solution.xlsx.xlsx 11KB
- 20. Statistics - Hypothesis Testing/9.1 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx 11KB
- 15. Statistics - Descriptive Statistics/24.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx 11KB
- 20. Statistics - Hypothesis Testing/8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx 11KB
- 15. Statistics - Descriptive Statistics/18.1 2.7. Mean, median and mode_exercise.xlsx.xlsx 11KB
- 18. Statistics - Inferential Statistics Confidence Intervals/4.2 3.9. Population variance known, z-score_exercise.xlsx.xlsx 11KB
- 15. Statistics - Descriptive Statistics/23.1 2.9. Variance_exercise.xlsx.xlsx 11KB
- 18. Statistics - Inferential Statistics Confidence Intervals/8.1 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx 11KB
- 20. Statistics - Hypothesis Testing/17.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx.xlsx 11KB
- 18. Statistics - Inferential Statistics Confidence Intervals/9.2 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx 11KB
- 20. Statistics - Hypothesis Testing/20.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx.xlsx 11KB
- 15. Statistics - Descriptive Statistics/17.1 2.7. Mean, median and mode_lesson.xlsx.xlsx 10KB
- 18. Statistics - Inferential Statistics Confidence Intervals/12.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx 10KB
- 2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.vtt 10KB
- 17. Statistics - Inferential Statistics Fundamentals/6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx 10KB
- 38. Advanced Statistical Methods - K-Means Clustering/5.1 Categorical.csv.csv 10KB
- 40. Part 6 Mathematics/16. Why is Linear Algebra Useful.vtt 10KB
- 18. Statistics - Inferential Statistics Confidence Intervals/15.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx 10KB
- 15. Statistics - Descriptive Statistics/22.1 2.9. Variance_lesson.xlsx.xlsx 10KB
- 35. Advanced Statistical Methods - Practical Example Linear Regression/6. Practical Example Linear Regression (Part 4).vtt 10KB
- 18. Statistics - Inferential Statistics Confidence Intervals/14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx 10KB
- 18. Statistics - Inferential Statistics Confidence Intervals/15.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx 10KB
- 18. Statistics - Inferential Statistics Confidence Intervals/17.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 10KB
- 20. Statistics - Hypothesis Testing/14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx 10KB
- 12. Probability Distributions/29.5 Customers_Membership.xlsx.xlsx 10KB
- 5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.vtt 10KB
- 20. Statistics - Hypothesis Testing/16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx 10KB
- 12. Probability Distributions/29.2 Daily Views.xlsx.xlsx 10KB
- 18. Statistics - Inferential Statistics Confidence Intervals/16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx 10KB
- 15. Statistics - Descriptive Statistics/21.2 2.8. Skewness_exercise.xlsx.xlsx 9KB
- 43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).vtt 9KB
- 51. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.vtt 9KB
- 20. Statistics - Hypothesis Testing/18.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx 9KB
- 5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.vtt 9KB
- 35. Advanced Statistical Methods - Practical Example Linear Regression/8. Practical Example Linear Regression (Part 5).vtt 9KB
- 2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.vtt 9KB
- 5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.vtt 9KB
- 18. Statistics - Inferential Statistics Confidence Intervals/17.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx 9KB
- 53. Software Integration/5. Taking a Closer Look at APIs.vtt 9KB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.vtt 9KB
- 50. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.vtt 9KB
- 55. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.vtt 9KB
- 58. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.vtt 9KB
- 13. Probability in Other Fields/1. Probability in Finance.vtt 9KB
- 18. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.vtt 9KB
- 58. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.vtt 8KB
- 34. Advanced Statistical Methods - Linear Regression with sklearn/19. Train - Test Split Explained.vtt 8KB
- 12. Probability Distributions/3. Types of Probability Distributions.vtt 8KB
- 36. Advanced Statistical Methods - Logistic Regression/16.1 Bank_data_testing.csv.csv 8KB
- 38. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.vtt 8KB
- 38. Advanced Statistical Methods - K-Means Clustering/3.1 Countries_exercise.csv.csv 8KB
- 38. Advanced Statistical Methods - K-Means Clustering/7.1 Countries_exercise.csv.csv 8KB
- 40. Part 6 Mathematics/15. Dot Product of Matrices.vtt 8KB
- 38. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).vtt 8KB
- 50. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.vtt 8KB
- 3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt 8KB
- 9. Part 2 Probability/1. The Basic Probability Formula.vtt 8KB