589689.xyz

Neural Networks for Machine Learning

  • 收录时间:2019-05-23 04:57:33
  • 文件大小:920MB
  • 下载次数:16
  • 最近下载:2020-09-02 17:53:15
  • 磁力链接:

文件列表

  1. 0504 Convolutional nets for object recognition.mp4 23MB
  2. 0701 Modeling sequences_ A brief overview.mp4 20MB
  3. 1401 Learning layers of features by stacking RBMs.mp4 20MB
  4. 1405 OPTIONAL VIDEO_ RBMs are infinite sigmoid belief nets.mp4 19MB
  5. 0503 Convolutional nets for digit recognition.mp4 18MB
  6. 1202 OPTIONAL VIDEO_ More efficient ways to get the statistics.mp4 17MB
  7. 0205 What perceptrons can_t do.mp4 17MB
  8. 0802 Modeling character strings with multiplicative connections.mp4 17MB
  9. 0801 A brief overview of Hessian Free optimization.mp4 16MB
  10. 1603 OPTIONAL_ Bayesian optimization of hyper-parameters.mp4 16MB
  11. 1304 The wake-sleep algorithm.mp4 16MB
  12. 1001 Why it helps to combine models.mp4 15MB
  13. 0605 Rmsprop_ Divide the gradient by a running average of its recent magnitude.mp4 15MB
  14. 0101 Why do we need machine learning_.mp4 15MB
  15. 1002 Mixtures of Experts.mp4 15MB
  16. 0602 A bag of tricks for mini-batch gradient descent.mp4 15MB
  17. 1302 Belief Nets.mp4 15MB
  18. 1101 Hopfield Nets.mp4 15MB
  19. 0401 Learning to predict the next word.mp4 14MB
  20. 0405 Ways to deal with the large number of possible outputs.mp4 14MB
  21. 1303 Learning sigmoid belief nets.mp4 14MB
  22. 1201 Boltzmann machine learning.mp4 14MB
  23. 0803 Learning to predict the next character using HF.mp4 14MB
  24. 1601 OPTIONAL_ Learning a joint model of images and captions.mp4 14MB
  25. 0901 Overview of ways to improve generalization.mp4 14MB
  26. 0301 Learning the weights of a linear neuron.mp4 14MB
  27. 0304 The backpropagation algorithm.mp4 13MB
  28. 1105 How a Boltzmann machine models data.mp4 13MB
  29. 1102 Dealing with spurious minima.mp4 13MB
  30. 1203 Restricted Boltzmann Machines.mp4 13MB
  31. 0905 The Bayesian interpretation of weight decay.mp4 12MB
  32. 0904 Introduction to the full Bayesian approach.mp4 12MB
  33. 1301 The ups and downs of back propagation.mp4 12MB
  34. 1104 Using stochastic units to improv search.mp4 12MB
  35. 1505 Learning binary codes for image retrieval.mp4 12MB
  36. 1103 Hopfield nets with hidden units.mp4 11MB
  37. 1402 Discriminative learning for DBNs.mp4 11MB
  38. 0804 Echo State Networks.mp4 11MB
  39. 1404 Modeling real-valued data with an RBM.mp4 11MB
  40. 1602 OPTIONAL_ Hierarchical Coordinate Frames.mp4 11MB
  41. 0305 Using the derivatives computed by backpropagation.mp4 11MB
  42. 1504 Semantic Hashing.mp4 11MB
  43. 1503 Deep auto encoders for document retrieval.mp4 10MB
  44. 0705 Long-term Short-term-memory.mp4 10MB
  45. 1403 What happens during discriminative fine-tuning_.mp4 10MB
  46. 0202 Perceptrons_ The first generation of neural networks.mp4 10MB
  47. 0102 What are neural networks_.mp4 10MB
  48. 0603 The momentum method.mp4 10MB
  49. 1005 Dropout.mp4 10MB
  50. 1501 From PCA to autoencoders.mp4 10MB
  51. 0601 Overview of mini-batch gradient descent.mp4 10MB
  52. 1205 RBMs for collaborative filtering.mp4 10MB
  53. 0103 Some simple models of neurons.mp4 9MB
  54. 0105 Three types of learning.mp4 9MB
  55. 0404 Neuro-probabilistic language models.mp4 9MB
  56. 0704 Why it is difficult to train an RNN.mp4 9MB
  57. 0201 Types of neural network architectures.mp4 9MB
  58. 1204 An example of RBM learning.mp4 9MB
  59. 0903 Using noise as a regularizer.mp4 8MB
  60. 1003 The idea of full Bayesian learning.mp4 8MB
  61. 1506 Shallow autoencoders for pre-training.mp4 8MB
  62. 1004 Making full Bayesian learning practical.mp4 8MB
  63. 0403 Another diversion_ The softmax output function.mp4 8MB
  64. 0902 Limiting the size of the weights.mp4 7MB
  65. 0702 Training RNNs with back propagation.mp4 7MB
  66. 0203 A geometrical view of perceptrons.mp4 7MB
  67. 0703 A toy example of training an RNN.mp4 7MB
  68. 0502 Achieving viewpoint invariance.mp4 7MB
  69. 0604 Adaptive learning rates for each connection.mp4 7MB
  70. 0104 A simple example of learning.mp4 7MB
  71. 0204 Why the learning works.mp4 6MB
  72. 0302 The error surface for a linear neuron.mp4 6MB
  73. 0501 Why object recognition is difficult.mp4 5MB
  74. 0402 A brief diversion into cognitive science.mp4 5MB
  75. 1502 Deep auto encoders.mp4 5MB
  76. 0906 MacKay_s quick and dirty method of setting weight costs.mp4 4MB
  77. 0303 Learning the weights of a logistic output neuron.mp4 4MB
  78. Slides/lecture_slides-lec1.pdf 4MB
  79. Info/0304 reading_list-Learning representations by back-propagating errors.pdf 3MB
  80. 1604 OPTIONAL_ The fog of progress.mp4 3MB
  81. Slides/lecture_slides-lec15.pdf 2MB
  82. Info/1303 reading_list-Connectionist learning of belief networks.pdf 2MB
  83. Slides/lecture_slides-lec12.pdf 2MB
  84. Info/1005 reading_list-Improving neural networks by preventing co-adaptation of feature detectors.pdf 2MB
  85. Slides/lecture_slides-lec5.pdf 2MB
  86. Slides/lecture_slides-lec14.pdf 1MB
  87. Slides/lecture_slides-lec7.pdf 953KB
  88. Slides/lecture_slides-lec4.pdf 941KB
  89. Info/0504 reading_list-Gradient-based learning applied to document recognition.pdf 933KB
  90. Slides/lecture_slides-lec10.pdf 827KB
  91. Info/1401 reading_list-A fast learning algorithm for deep belief nets.pdf 769KB
  92. Info/1505 reading_list-Using Very Deep Autoencoders for Content-Based Image Retrieval.pdf 741KB
  93. Slides/lecture_slides-lec9.pdf 702KB
  94. Slides/lecture_slides-lec11.pdf 695KB
  95. Slides/lecture_slides-lec8.pdf 643KB
  96. Info/1504 reading_list-Semantic Hashing.pdf 627KB
  97. Slides/lecture_slides-lec3.pdf 535KB
  98. Slides/lecture_slides-lec6.pdf 534KB
  99. Info/1401 reading_list-To recognize shapes, first learn to generate images.pdf 502KB
  100. Slides/lecture_slides-lec2.pdf 493KB
  101. Info/1401 reading_list-Self-taught learning- transfer learning from unlabeled data.pdf 474KB
  102. Slides/lecture_slides-lec16.pdf 339KB
  103. Info/0705 reading_list-A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks.pdf 313KB
  104. Info/0804 Echo state network - Scholarpedia.htm 311KB
  105. Slides/lecture_slides-lec13.pdf 307KB
  106. Info/1105 Boltzmann machine - Scholarpedia.htm 289KB
  107. Info/0803 reading_list-Generating Text with Recurrent Neural Networks.pdf 267KB
  108. Info/1002 reading_list-Adaptive mixtures of local experts.pdf 265KB
  109. Info/1304 reading_list-- algorithm for unsupervised neural networks.pdf 255KB
  110. Info/0405 images-Lecture4-turian.png 151KB
  111. Info/0804 Echo state network - Scholarpedia_files/load(1).php 151KB
  112. Info/1105 Boltzmann machine - Scholarpedia_files/load(1).php 151KB
  113. Info/0804 Echo state network - Scholarpedia_files/load(6).php 149KB
  114. Info/1105 Boltzmann machine - Scholarpedia_files/load(6).php 149KB
  115. Info/0404 reading_list-Neural probabilisic language models.pdf 137KB
  116. Info/0504 reading_list-Convolutional networks for images, speech, and time series.pdf 122KB
  117. Info/0804 Echo state network - Scholarpedia_files/cb=gapi.loaded_0 98KB
  118. Info/1105 Boltzmann machine - Scholarpedia_files/cb=gapi.loaded_0 98KB
  119. Info/0804 Echo state network - Scholarpedia_files/500px-FreqGenSchema.png 72KB
  120. Info/0804 Echo state network - Scholarpedia_files/load(4).php 67KB
  121. Info/1105 Boltzmann machine - Scholarpedia_files/load(4).php 67KB
  122. Info/0804 Echo state network - Scholarpedia_files/core-rpc-shindig.random-shindig.sha1.js 66KB
  123. Info/1105 Boltzmann machine - Scholarpedia_files/core-rpc-shindig.random-shindig.sha1.js 66KB
  124. Info/0804 Echo state network - Scholarpedia_files/MathJax.js 57KB
  125. Info/1105 Boltzmann machine - Scholarpedia_files/MathJax.js 57KB
  126. Info/0804 Echo state network - Scholarpedia_files/cb=gapi.loaded_1 50KB
  127. Info/1105 Boltzmann machine - Scholarpedia_files/cb=gapi.loaded_1 50KB
  128. Info/0804 Echo state network - Scholarpedia_files/fastbutton.htm 46KB
  129. Info/1105 Boltzmann machine - Scholarpedia_files/fastbutton.htm 46KB
  130. Info/0804 Echo state network - Scholarpedia_files/twitter.png 42KB
  131. Info/1105 Boltzmann machine - Scholarpedia_files/twitter.png 42KB
  132. Info/0804 Echo state network - Scholarpedia_files/ga.js 39KB
  133. Info/1105 Boltzmann machine - Scholarpedia_files/ga.js 39KB
  134. Info/0804 Echo state network - Scholarpedia_files/400px-FreqGenTestOverlay.png 39KB
  135. Info/0804 Echo state network - Scholarpedia_files/plusone.js 33KB
  136. Info/1105 Boltzmann machine - Scholarpedia_files/plusone.js 33KB
  137. 0504 Convolutional nets for object recognition.srt 26KB
  138. 1401 Learning layers of features by stacking RBMs.srt 23KB
  139. 0701 Modeling sequences_ A brief overview.srt 23KB
  140. 1405 OPTIONAL VIDEO_ RBMs are infinite sigmoid belief nets.srt 22KB
  141. 0503 Convolutional nets for digit recognition.srt 22KB
  142. 0602 A bag of tricks for mini-batch gradient descent.srt 19KB
  143. 1603 OPTIONAL_ Bayesian optimization of hyper-parameters.srt 19KB
  144. 0205 What perceptrons can_t do.srt 19KB
  145. 0101 Why do we need machine learning_.srt 18KB
  146. 1202 OPTIONAL VIDEO_ More efficient ways to get the statistics.srt 18KB
  147. 0405 Ways to deal with the large number of possible outputs.srt 18KB
  148. 0801 A brief overview of Hessian Free optimization.srt 18KB
  149. 1001 Why it helps to combine models.srt 18KB
  150. 0802 Modeling character strings with multiplicative connections.srt 17KB
  151. 1304 The wake-sleep algorithm.srt 17KB
  152. 1302 Belief Nets.srt 17KB
  153. 1002 Mixtures of Experts.srt 17KB
  154. 0401 Learning to predict the next word.srt 16KB
  155. 1101 Hopfield Nets.srt 16KB
  156. 1201 Boltzmann machine learning.srt 16KB
  157. 1105 How a Boltzmann machine models data.srt 16KB
  158. 0901 Overview of ways to improve generalization.srt 16KB
  159. 0803 Learning to predict the next character using HF.srt 16KB
  160. 0605 Rmsprop_ Divide the gradient by a running average of its recent magnitude.srt 16KB
  161. 0301 Learning the weights of a linear neuron.srt 15KB
  162. 0304 The backpropagation algorithm.srt 15KB
  163. 1102 Dealing with spurious minima.srt 15KB
  164. 1303 Learning sigmoid belief nets.srt 15KB
  165. 1104 Using stochastic units to improv search.srt 14KB
  166. 1301 The ups and downs of back propagation.srt 14KB
  167. 1203 Restricted Boltzmann Machines.srt 14KB
  168. 0305 Using the derivatives computed by backpropagation.srt 14KB
  169. 1602 OPTIONAL_ Hierarchical Coordinate Frames.srt 13KB
  170. 0904 Introduction to the full Bayesian approach.srt 13KB
  171. 0905 The Bayesian interpretation of weight decay.srt 13KB
  172. 1505 Learning binary codes for image retrieval.srt 13KB
  173. 1402 Discriminative learning for DBNs.srt 13KB
  174. Info/1105 Boltzmann machine - Scholarpedia_files/postmessageRelay.htm 12KB
  175. Info/0804 Echo state network - Scholarpedia_files/postmessageRelay.htm 12KB
  176. Info/0804 Echo state network - Scholarpedia_files/load(5).php 12KB
  177. Info/1105 Boltzmann machine - Scholarpedia_files/load(5).php 12KB
  178. 1103 Hopfield nets with hidden units.srt 12KB
  179. 1404 Modeling real-valued data with an RBM.srt 12KB
  180. 0804 Echo State Networks.srt 12KB
  181. 0601 Overview of mini-batch gradient descent.srt 12KB
  182. 1005 Dropout.srt 12KB
  183. 0705 Long-term Short-term-memory.srt 12KB
  184. 0102 What are neural networks_.srt 12KB
  185. 1504 Semantic Hashing.srt 11KB
  186. 0603 The momentum method.srt 11KB
  187. 0202 Perceptrons_ The first generation of neural networks.srt 11KB
  188. 0404 Neuro-probabilistic language models.srt 11KB
  189. 0103 Some simple models of neurons.srt 11KB
  190. 1205 RBMs for collaborative filtering.srt 11KB
  191. 1403 What happens during discriminative fine-tuning_.srt 11KB
  192. 1503 Deep auto encoders for document retrieval.srt 11KB
  193. 0105 Three types of learning.srt 10KB
  194. 1601 OPTIONAL_ Learning a joint model of images and captions.srt 10KB
  195. 1003 The idea of full Bayesian learning.srt 10KB
  196. 1501 From PCA to autoencoders.srt 10KB
  197. Info/0804 Echo state network - Scholarpedia_files/load.php 10KB
  198. Info/1105 Boltzmann machine - Scholarpedia_files/load.php 10KB
  199. 1506 Shallow autoencoders for pre-training.srt 10KB
  200. 1204 An example of RBM learning.srt 10KB
  201. 0201 Types of neural network architectures.srt 10KB
  202. 0704 Why it is difficult to train an RNN.srt 10KB
  203. 0403 Another diversion_ The softmax output function.srt 9KB
  204. 0903 Using noise as a regularizer.srt 9KB
  205. 1004 Making full Bayesian learning practical.srt 8KB
  206. 0902 Limiting the size of the weights.srt 8KB
  207. 0702 Training RNNs with back propagation.srt 8KB
  208. 0203 A geometrical view of perceptrons.srt 8KB
  209. 0502 Achieving viewpoint invariance.srt 8KB
  210. 0604 Adaptive learning rates for each connection.srt 8KB
  211. 0703 A toy example of training an RNN.srt 8KB
  212. 0104 A simple example of learning.srt 7KB
  213. 0204 Why the learning works.srt 6KB
  214. 0302 The error surface for a linear neuron.srt 6KB
  215. 0501 Why object recognition is difficult.srt 6KB
  216. 0402 A brief diversion into cognitive science.srt 6KB
  217. 1502 Deep auto encoders.srt 5KB
  218. Info/0804 Echo state network - Scholarpedia_files/88x31.png 5KB
  219. Info/1105 Boltzmann machine - Scholarpedia_files/88x31.png 5KB
  220. Info/0804 Echo state network - Scholarpedia_files/1088796616-postmessagerelay.js 5KB
  221. Info/1105 Boltzmann machine - Scholarpedia_files/1088796616-postmessagerelay.js 5KB
  222. 0303 Learning the weights of a logistic output neuron.srt 4KB
  223. 0906 MacKay_s quick and dirty method of setting weight costs.srt 4KB
  224. Info/0804 Echo state network - Scholarpedia_files/badge.gif 4KB
  225. Info/1105 Boltzmann machine - Scholarpedia_files/badge.gif 4KB
  226. Info/0804 Echo state network - Scholarpedia_files/poweredby_mediawiki_88x31.png 4KB
  227. Info/1105 Boltzmann machine - Scholarpedia_files/poweredby_mediawiki_88x31.png 4KB
  228. 1604 OPTIONAL_ The fog of progress.srt 3KB
  229. Info/0804 Echo state network - Scholarpedia_files/load(2).php 3KB
  230. Info/1105 Boltzmann machine - Scholarpedia_files/load(2).php 3KB
  231. Info/0804 Echo state network - Scholarpedia_files/linkedin.png 636B
  232. Info/1105 Boltzmann machine - Scholarpedia_files/linkedin.png 636B
  233. Info/0804 Echo state network - Scholarpedia_files/search-ltr.png 595B
  234. Info/1105 Boltzmann machine - Scholarpedia_files/search-ltr.png 595B
  235. Info/0804 Echo state network - Scholarpedia_files/facebook.png 540B
  236. Info/1105 Boltzmann machine - Scholarpedia_files/facebook.png 540B
  237. Info/0804 Echo state network - Scholarpedia_files/gplus-16.png 492B
  238. Info/1105 Boltzmann machine - Scholarpedia_files/gplus-16.png 492B
  239. Info/0804 Echo state network - Scholarpedia_files/load(3).php 428B
  240. Info/1105 Boltzmann machine - Scholarpedia_files/load(3).php 428B
  241. Info/0804 Echo state network - Scholarpedia_files/photo.jpg 356B
  242. Info/1105 Boltzmann machine - Scholarpedia_files/photo.jpg 356B
  243. Info/0804 Echo state network - Scholarpedia_files/magnify-clip.png 204B