Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science 收录时间:2019-11-26 23:52:34 文件大小:6GB 下载次数:56 最近下载:2021-01-23 10:29:05 磁力链接: magnet:?xt=urn:btih:2e8942a2fc4034003e8653282b7f9d6f8e722206 立即下载 复制链接 文件列表 1. Welcome to the course!/6.1 Machine_Learning_A-Z_New.zip.zip 228MB 36. Kernel PCA/3. Kernel PCA in R.mp4 57MB 1. Welcome to the course!/7. Updates on Udemy Reviews.vtt 53MB 1. Welcome to the course!/7. Updates on Udemy Reviews.mp4 53MB 39. XGBoost/5. THANK YOU bonus video.mp4 52MB 12. Logistic Regression/13. Logistic Regression in R - Step 5.mp4 52MB 35. Linear Discriminant Analysis (LDA)/4. LDA in R.mp4 51MB 17. Decision Tree Classification/4. Decision Tree Classification in R.mp4 51MB 18. Random Forest Classification/4. Random Forest Classification in R.mp4 49MB 31. Artificial Neural Networks/13. ANN in Python - Step 2.mp4 48MB 39. XGBoost/4. XGBoost in R.mp4 47MB 27. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in R - Step 3.mp4 47MB 18. Random Forest Classification/3. Random Forest Classification in Python.mp4 47MB 32. Convolutional Neural Networks/20. CNN in Python - Step 9.mp4 47MB 7. Support Vector Regression (SVR)/2. SVR Intuition.mp4 47MB 7. Support Vector Regression (SVR)/3. SVR in Python.mp4 46MB 35. Linear Discriminant Analysis (LDA)/3. LDA in Python.mp4 45MB 8. Decision Tree Regression/4. Decision Tree Regression in R.mp4 44MB 16. Naive Bayes/1. Bayes Theorem.mp4 44MB 24. Apriori/5. Apriori in R - Step 3.mp4 44MB 38. Model Selection/3. k-Fold Cross Validation in R.mp4 44MB 6. Polynomial Regression/10. Polynomial Regression in R - Step 3.mp4 43MB 28. Thompson Sampling/4. Thompson Sampling in Python - Step 1.mp4 43MB 6. Polynomial Regression/5. Polynomial Regression in Python - Step 3.vtt 43MB 6. Polynomial Regression/5. Polynomial Regression in Python - Step 3.mp4 43MB 24. Apriori/3. Apriori in R - Step 1.vtt 43MB 24. Apriori/3. Apriori in R - Step 1.mp4 43MB 32. Convolutional Neural Networks/7. Step 4 - Full Connection.mp4 43MB 12. Logistic Regression/7. Logistic Regression in Python - Step 5.mp4 43MB 15. Kernel SVM/6. Kernel SVM in Python.mp4 42MB 13. K-Nearest Neighbors (K-NN)/4. K-NN in R.mp4 41MB 29. -------------------- Part 7 Natural Language Processing --------------------/24. Natural Language Processing in R - Step 10.mp4 41MB 27. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.mp4 41MB 28. Thompson Sampling/6. Thompson Sampling in R - Step 1.mp4 41MB 2. -------------------- Part 1 Data Preprocessing --------------------/7. Categorical Data.mp4 41MB 15. Kernel SVM/7. Kernel SVM in R.mp4 40MB 29. -------------------- Part 7 Natural Language Processing --------------------/15. Natural Language Processing in R - Step 1.mp4 40MB 29. -------------------- Part 7 Natural Language Processing --------------------/15. Natural Language Processing in R - Step 1.vtt 40MB 9. Random Forest Regression/4. Random Forest Regression in R.mp4 40MB 32. Convolutional Neural Networks/5. Step 2 - Pooling.mp4 40MB 21. K-Means Clustering/5. K-Means Clustering in Python.mp4 40MB 5. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4 40MB 5. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.mp4 40MB 29. -------------------- Part 7 Natural Language Processing --------------------/11. Natural Language Processing in Python - Step 8.mp4 39MB 9. Random Forest Regression/3. Random Forest Regression in Python.mp4 39MB 2. -------------------- Part 1 Data Preprocessing --------------------/9. Splitting the Dataset into the Training set and Test set.mp4 39MB 31. Artificial Neural Networks/22. ANN in R - Step 1.mp4 39MB 38. Model Selection/4. Grid Search in Python - Step 1.mp4 38MB 24. Apriori/6. Apriori in Python - Step 1.mp4 38MB 4. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.mp4 37MB 16. Naive Bayes/7. Naive Bayes in R.mp4 37MB 28. Thompson Sampling/1. Thompson Sampling Intuition.mp4 37MB 34. Principal Component Analysis (PCA)/8. PCA in R - Step 3.vtt 37MB 34. Principal Component Analysis (PCA)/8. PCA in R - Step 3.mp4 37MB 38. Model Selection/6. Grid Search in R.mp4 36MB 27. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.mp4 35MB 13. K-Nearest Neighbors (K-NN)/3. K-NN in Python.mp4 35MB 29. -------------------- Part 7 Natural Language Processing --------------------/4. Natural Language Processing in Python - Step 1.mp4 35MB 24. Apriori/1. Apriori Intuition.mp4 35MB 2. -------------------- Part 1 Data Preprocessing --------------------/10. Feature Scaling.mp4 35MB 8. Decision Tree Regression/3. Decision Tree Regression in Python.mp4 34MB 31. Artificial Neural Networks/25. ANN in R - Step 4 (Last step).mp4 33MB 36. Kernel PCA/2. Kernel PCA in Python.mp4 33MB 32. Convolutional Neural Networks/9. Softmax & Cross-Entropy.mp4 33MB 38. Model Selection/2. k-Fold Cross Validation in Python.mp4 33MB 5. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.mp4 33MB 14. Support Vector Machine (SVM)/4. SVM in R.mp4 32MB 2. -------------------- Part 1 Data Preprocessing --------------------/6. Missing Data.mp4 32MB 34. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.mp4 32MB 39. XGBoost/3. XGBoost in Python - Step 2.vtt 32MB 39. XGBoost/3. XGBoost in Python - Step 2.mp4 32MB 34. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.mp4 32MB 27. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.mp4 32MB 30. -------------------- Part 8 Deep Learning --------------------/2. What is Deep Learning.mp4 31MB 14. Support Vector Machine (SVM)/3. SVM in Python.mp4 31MB 32. Convolutional Neural Networks/3. Step 1 - Convolution Operation.mp4 31MB 4. Simple Linear Regression/8. Simple Linear Regression in Python - Step 4.mp4 31MB 34. Principal Component Analysis (PCA)/6. PCA in R - Step 1.mp4 31MB 24. Apriori/4. Apriori in R - Step 2.mp4 30MB 27. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.mp4 30MB 31. Artificial Neural Networks/2. The Neuron.mp4 30MB 17. Decision Tree Classification/3. Decision Tree Classification in Python.mp4 30MB 29. -------------------- Part 7 Natural Language Processing --------------------/2. Natural Language Processing Intuition.mp4 30MB 31. Artificial Neural Networks/16. ANN in Python - Step 5.mp4 30MB 38. Model Selection/5. Grid Search in Python - Step 2.mp4 30MB 24. Apriori/7. Apriori in Python - Step 2.mp4 30MB 32. Convolutional Neural Networks/2. What are convolutional neural networks.mp4 29MB 27. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.mp4 29MB 27. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.vtt 29MB 31. Artificial Neural Networks/12. ANN in Python - Step 1.mp4 29MB 15. Kernel SVM/3. The Kernel Trick.mp4 29MB 12. Logistic Regression/1. Logistic Regression Intuition.mp4 29MB 34. Principal Component Analysis (PCA)/7. PCA in R - Step 2.mp4 29MB 27. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in R - Step 2.mp4 29MB 21. K-Means Clustering/6. K-Means Clustering in R.mp4 29MB 29. -------------------- Part 7 Natural Language Processing --------------------/23. Natural Language Processing in R - Step 9.mp4 29MB 31. Artificial Neural Networks/24. ANN in R - Step 3.mp4 29MB 5. Multiple Linear Regression/8. Multiple Linear Regression Intuition - Step 5.mp4 29MB 27. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in R - Step 1.mp4 28MB 16. Naive Bayes/2. Naive Bayes Intuition.mp4 28MB 6. Polynomial Regression/7. Python Regression Template.mp4 27MB 32. Convolutional Neural Networks/15. CNN in Python - Step 4.mp4 27MB 5. Multiple Linear Regression/14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4 27MB 6. Polynomial Regression/4. Polynomial Regression in Python - Step 2.mp4 27MB 24. Apriori/8. Apriori in Python - Step 3.vtt 27MB 35. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.mp4 27MB 24. Apriori/8. Apriori in Python - Step 3.mp4 27MB 21. K-Means Clustering/1. K-Means Clustering Intuition.mp4 27MB 31. Artificial Neural Networks/5. How do Neural Networks learn.mp4 27MB 5. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 2.mp4 26MB 7. Support Vector Regression (SVR)/4. SVR in R.mp4 26MB 34. Principal Component Analysis (PCA)/5. PCA in Python - Step 3.mp4 26MB 6. Polynomial Regression/12. R Regression Template.mp4 25MB 32. Convolutional Neural Networks/12. CNN in Python - Step 1.mp4 25MB 6. Polynomial Regression/3. Polynomial Regression in Python - Step 1.mp4 25MB 10. Evaluating Regression Models Performance/4. Interpreting Linear Regression Coefficients.mp4 24MB 29. -------------------- Part 7 Natural Language Processing --------------------/13. Natural Language Processing in Python - Step 10.mp4 24MB 29. -------------------- Part 7 Natural Language Processing --------------------/7. Natural Language Processing in Python - Step 4.mp4 24MB 6. Polynomial Regression/9. Polynomial Regression in R - Step 2.mp4 24MB 5. Multiple Linear Regression/12. Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4 24MB 31. Artificial Neural Networks/4. How do Neural Networks work.mp4 24MB 16. Naive Bayes/6. Naive Bayes in Python.mp4 23MB 2. -------------------- Part 1 Data Preprocessing --------------------/4. Importing the Dataset.mp4 23MB 21. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.mp4 23MB 22. Hierarchical Clustering/3. Hierarchical Clustering Using Dendrograms.mp4 23MB 8. Decision Tree Regression/1. Decision Tree Regression Intuition.mp4 23MB 6. Polynomial Regression/11. Polynomial Regression in R - Step 4.vtt 22MB 6. Polynomial Regression/11. Polynomial Regression in R - Step 4.mp4 22MB 34. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.mp4 22MB 29. -------------------- Part 7 Natural Language Processing --------------------/5. Natural Language Processing in Python - Step 2.mp4 22MB 10. Evaluating Regression Models Performance/3. Evaluating Regression Models Performance - Homework's Final Part.mp4 22MB 4. Simple Linear Regression/5. Simple Linear Regression in Python - Step 1.mp4 22MB 39. XGBoost/2. XGBoost in Python - Step 1.mp4 21MB 2. -------------------- Part 1 Data Preprocessing --------------------/2. Get the dataset.mp4 21MB 25. Eclat/3. Eclat in R.mp4 21MB 32. Convolutional Neural Networks/21. CNN in Python - Step 10.mp4 21MB 2. -------------------- Part 1 Data Preprocessing --------------------/11. And here is our Data Preprocessing Template!.mp4 20MB 1. Welcome to the course!/8. Installing Python and Anaconda (Mac, Linux & Windows).mp4 20MB 18. Random Forest Classification/1. Random Forest Classification Intuition.mp4 19MB 10. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.mp4 19MB 16. Naive Bayes/4. Naive Bayes Intuition (Extras).mp4 19MB 17. Decision Tree Classification/1. Decision Tree Classification Intuition.vtt 19MB 17. Decision Tree Classification/1. Decision Tree Classification Intuition.mp4 19MB 4. Simple Linear Regression/6. Simple Linear Regression in Python - Step 2.mp4 19MB 19. Evaluating Classification Models Performance/4. CAP Curve.mp4 19MB 31. Artificial Neural Networks/6. Gradient Descent.mp4 19MB 31. Artificial Neural Networks/19. ANN in Python - Step 8.vtt 18MB 31. Artificial Neural Networks/19. ANN in Python - Step 8.mp4 18MB 14. Support Vector Machine (SVM)/1. SVM Intuition.mp4 18MB 5. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 1.mp4 18MB 6. Polynomial Regression/8. Polynomial Regression in R - Step 1.mp4 18MB 1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).mp4 18MB 29. -------------------- Part 7 Natural Language Processing --------------------/16. Natural Language Processing in R - Step 2.mp4 17MB 22. Hierarchical Clustering/2. Hierarchical Clustering How Dendrograms Work.mp4 17MB 5. Multiple Linear Regression/20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 17MB 29. -------------------- Part 7 Natural Language Processing --------------------/10. Natural Language Processing in Python - Step 7.mp4 17MB 31. Artificial Neural Networks/21. ANN in Python - Step 10.mp4 17MB 31. Artificial Neural Networks/20. ANN in Python - Step 9.mp4 17MB 31. Artificial Neural Networks/7. Stochastic Gradient Descent.mp4 17MB 22. Hierarchical Clustering/1. Hierarchical Clustering Intuition.mp4 17MB 22. Hierarchical Clustering/1. Hierarchical Clustering Intuition.vtt 17MB 31. Artificial Neural Networks/10. Business Problem Description.mp4 16MB 4. Simple Linear Regression/7. Simple Linear Regression in Python - Step 3.mp4 16MB 21. K-Means Clustering/2. K-Means Random Initialization Trap.mp4 15MB 29. -------------------- Part 7 Natural Language Processing --------------------/8. Natural Language Processing in Python - Step 5.mp4 15MB 31. Artificial Neural Networks/3. The Activation Function.mp4 15MB 12. Logistic Regression/11. Logistic Regression in R - Step 3.mp4 15MB 4. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.mp4 14MB 5. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.mp4 14MB 5. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 3.mp4 14MB 31. Artificial Neural Networks/23. ANN in R - Step 2.mp4 14MB 32. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.mp4 14MB 28. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.mp4 14MB 29. -------------------- Part 7 Natural Language Processing --------------------/12. Natural Language Processing in Python - Step 9.mp4 14MB 9. Random Forest Regression/1. Random Forest Regression Intuition.mp4 14MB 15. Kernel SVM/2. Mapping to a higher dimension.mp4 14MB 19. Evaluating Classification Models Performance/1. False Positives & False Negatives.mp4 14MB 6. Polynomial Regression/6. Polynomial Regression in Python - Step 4.vtt 14MB 29. -------------------- Part 7 Natural Language Processing --------------------/17. Natural Language Processing in R - Step 3.mp4 14MB 6. Polynomial Regression/6. Polynomial Regression in Python - Step 4.mp4 14MB 16. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).mp4 13MB 29. -------------------- Part 7 Natural Language Processing --------------------/22. Natural Language Processing in R - Step 8.mp4 13MB 32. Convolutional Neural Networks/18. CNN in Python - Step 7.mp4 13MB 12. Logistic Regression/3. Logistic Regression in Python - Step 1.mp4 13MB 1. Welcome to the course!/3. Why Machine Learning is the Future.mp4 13MB 29. -------------------- Part 7 Natural Language Processing --------------------/20. Natural Language Processing in R - Step 6.mp4 13MB 22. Hierarchical Clustering/6. HC in Python - Step 2.mp4 13MB 12. Logistic Regression/9. Logistic Regression in R - Step 1.mp4 13MB 12. Logistic Regression/14. R Classification Template.mp4 12MB 15. Kernel SVM/4. Types of Kernel Functions.mp4 12MB 22. Hierarchical Clustering/7. HC in Python - Step 3.mp4 12MB 12. Logistic Regression/8. Python Classification Template.mp4 12MB 22. Hierarchical Clustering/8. HC in Python - Step 4.mp4 12MB 14. Support Vector Machine (SVM)/2. How to get the dataset.mp4 12MB 22. Hierarchical Clustering/4. How to get the dataset.mp4 12MB 24. Apriori/2. How to get the dataset.mp4 12MB 25. Eclat/2. How to get the dataset.mp4 12MB 28. Thompson Sampling/3. How to get the dataset.mp4 12MB 38. Model Selection/1. How to get the dataset.mp4 12MB 38. Model Selection/1. How to get the dataset.vtt 12MB 9. Random Forest Regression/2. How to get the dataset.mp4 12MB 12. Logistic Regression/2. How to get the dataset.mp4 12MB 13. K-Nearest Neighbors (K-NN)/2. How to get the dataset.mp4 12MB 15. Kernel SVM/5. How to get the dataset.mp4 12MB 16. Naive Bayes/5. How to get the dataset.mp4 12MB 17. Decision Tree Classification/2. How to get the dataset.mp4 12MB 18. Random Forest Classification/2. How to get the dataset.mp4 12MB 21. K-Means Clustering/4. How to get the dataset.mp4 12MB 27. Upper Confidence Bound (UCB)/3. How to get the dataset.mp4 12MB 29. -------------------- Part 7 Natural Language Processing --------------------/3. How to get the dataset.mp4 12MB 31. Artificial Neural Networks/9. How to get the dataset.mp4 12MB 32. Convolutional Neural Networks/10. How to get the dataset.mp4 12MB 34. Principal Component Analysis (PCA)/2. How to get the dataset.mp4 12MB 35. Linear Discriminant Analysis (LDA)/2. How to get the dataset.mp4 12MB 36. Kernel PCA/1. How to get the dataset.mp4 12MB 39. XGBoost/1. How to get the dataset.mp4 12MB 4. Simple Linear Regression/1. How to get the dataset.mp4 12MB 5. Multiple Linear Regression/1. How to get the dataset.mp4 12MB 6. Polynomial Regression/2. How to get the dataset.mp4 12MB 7. Support Vector Regression (SVR)/1. How to get the dataset.mp4 12MB 8. Decision Tree Regression/2. How to get the dataset.mp4 12MB 19. Evaluating Classification Models Performance/5. CAP Curve Analysis.mp4 12MB 22. Hierarchical Clustering/11. HC in R - Step 2.mp4 11MB 2. -------------------- Part 1 Data Preprocessing --------------------/3. Importing the Libraries.mp4 11MB 31. Artificial Neural Networks/8. Backpropagation.mp4 11MB 22. Hierarchical Clustering/5. HC in Python - Step 1.mp4 11MB 25. Eclat/1. Eclat Intuition.mp4 11MB 5. Multiple Linear Regression/18. Multiple Linear Regression in R - Step 3.mp4 10MB 12. Logistic Regression/6. Logistic Regression in Python - Step 4.mp4 10MB 5. Multiple Linear Regression/2. Dataset + Business Problem Description.mp4 10MB 32. Convolutional Neural Networks/16. CNN in Python - Step 5.mp4 10MB 32. Convolutional Neural Networks/17. CNN in Python - Step 6.mp4 10MB 4. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.mp4 10MB 4. Simple Linear Regression/3. Simple Linear Regression Intuition - Step 1.mp4 9MB 6. Polynomial Regression/1. Polynomial Regression Intuition.mp4 9MB 13. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.mp4 9MB 27. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.mp4 9MB 31. Artificial Neural Networks/18. ANN in Python - Step 7.mp4 9MB 10. Evaluating Regression Models Performance/1. R-Squared Intuition.mp4 9MB 4. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.mp4 9MB 28. Thompson Sampling/5. Thompson Sampling in Python - Step 2.mp4 8MB 22. Hierarchical Clustering/9. HC in Python - Step 5.mp4 8MB 31. Artificial Neural Networks/14. ANN in Python - Step 3.mp4 8MB 12. Logistic Regression/4. Logistic Regression in Python - Step 2.mp4 8MB 19. Evaluating Classification Models Performance/2. Confusion Matrix.mp4 8MB 1. Welcome to the course!/1. Applications of Machine Learning.mp4 8MB 32. Convolutional Neural Networks/8. Summary.mp4 8MB 12. Logistic Regression/10. Logistic Regression in R - Step 2.mp4 8MB 22. Hierarchical Clustering/12. HC in R - Step 3.mp4 8MB 29. -------------------- Part 7 Natural Language Processing --------------------/21. Natural Language Processing in R - Step 7.mp4 8MB 28. Thompson Sampling/7. Thompson Sampling in R - Step 2.mp4 7MB 22. Hierarchical Clustering/13. HC in R - Step 4.mp4 7MB 27. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 4.mp4 7MB 22. Hierarchical Clustering/10. HC in R - Step 1.mp4 7MB 5. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.mp4 7MB 31. Artificial Neural Networks/17. ANN in Python - Step 6.mp4 7MB 12. Logistic Regression/12. Logistic Regression in R - Step 4.mp4 7MB 22. Hierarchical Clustering/14. HC in R - Step 5.mp4 7MB 32. Convolutional Neural Networks/19. CNN in Python - Step 8.mp4 7MB 4. Simple Linear Regression/2. Dataset + Business Problem Description.mp4 7MB 29. -------------------- Part 7 Natural Language Processing --------------------/18. Natural Language Processing in R - Step 4.mp4 7MB 29. -------------------- Part 7 Natural Language Processing --------------------/9. Natural Language Processing in Python - Step 6.mp4 6MB 12. Logistic Regression/5. Logistic Regression in Python - Step 3.mp4 6MB 32. Convolutional Neural Networks/1. Plan of attack.mp4 6MB 31. Artificial Neural Networks/15. ANN in Python - Step 4.mp4 6MB 32. Convolutional Neural Networks/13. CNN in Python - Step 2.mp4 6MB 15. Kernel SVM/1. Kernel SVM Intuition.mp4 6MB 4. Simple Linear Regression/4. Simple Linear Regression Intuition - Step 2.mp4 5MB 31. Artificial Neural Networks/1. Plan of attack.mp4 5MB 29. -------------------- Part 7 Natural Language Processing --------------------/19. Natural Language Processing in R - Step 5.mp4 5MB 5. Multiple Linear Regression/6. Multiple Linear Regression Intuition - Step 4.mp4 5MB 19. Evaluating Classification Models Performance/3. Accuracy Paradox.mp4 4MB 29. -------------------- Part 7 Natural Language Processing --------------------/6. Natural Language Processing in Python - Step 3.mp4 3MB 29. -------------------- Part 7 Natural Language Processing --------------------/6. Natural Language Processing in Python - Step 3.vtt 3MB 32. Convolutional Neural Networks/6. Step 3 - Flattening.mp4 3MB 2. -------------------- Part 1 Data Preprocessing --------------------/1. Welcome to Part 1 - Data Preprocessing.mp4 3MB 1. Welcome to the course!/5.1 Machine_Learning_A_Z_Q_A.pdf.pdf 2MB 12. Logistic Regression/3. Logistic Regression in Python - Step 1.vtt 2MB 32. Convolutional Neural Networks/14. CNN in Python - Step 3.mp4 2MB 5. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 1.mp4 2MB 5. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 2.mp4 2MB 25. Eclat/3.1 Eclat.zip.zip 49KB 16. Naive Bayes/1. Bayes Theorem.vtt 31KB 18. Random Forest Classification/4. Random Forest Classification in R.vtt 29KB 8. Decision Tree Regression/4. Decision Tree Regression in R.vtt 29KB 24. Apriori/5. Apriori in R - Step 3.vtt 28KB 7. Support Vector Regression (SVR)/3. SVR in Python.vtt 27KB 6. Polynomial Regression/10. Polynomial Regression in R - Step 3.vtt 27KB 18. Random Forest Classification/3. Random Forest Classification in Python.vtt 27KB 36. Kernel PCA/3. Kernel PCA in R.vtt 27KB 12. Logistic Regression/7. Logistic Regression in Python - Step 5.vtt 26KB 12. Logistic Regression/13. Logistic Regression in R - Step 5.vtt 26KB 17. Decision Tree Classification/4. Decision Tree Classification in R.vtt 26KB 22. Hierarchical Clustering/16.1 Clustering-Pros-Cons.pdf.pdf 26KB 35. Linear Discriminant Analysis (LDA)/4. LDA in R.vtt 26KB 32. Convolutional Neural Networks/20. CNN in Python - Step 9.vtt 25KB 21. K-Means Clustering/5. K-Means Clustering in Python.vtt 25KB 28. Thompson Sampling/4. Thompson Sampling in Python - Step 1.vtt 25KB 9. Random Forest Regression/4. Random Forest Regression in R.vtt 25KB 32. Convolutional Neural Networks/7. Step 4 - Full Connection.vtt 25KB 15. Kernel SVM/6. Kernel SVM in Python.vtt 25KB 24. Apriori/6. Apriori in Python - Step 1.vtt 25KB 31. Artificial Neural Networks/13. ANN in Python - Step 2.vtt 25KB 5. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.vtt 25KB 9. Random Forest Regression/3. Random Forest Regression in Python.vtt 24KB 28. Thompson Sampling/6. Thompson Sampling in R - Step 1.vtt 24KB 38. Model Selection/3. k-Fold Cross Validation in R.vtt 24KB 28. Thompson Sampling/1. Thompson Sampling Intuition.vtt 24KB 2. -------------------- Part 1 Data Preprocessing --------------------/9. Splitting the Dataset into the Training set and Test set.vtt 24KB 2. -------------------- Part 1 Data Preprocessing --------------------/7. Categorical Data.vtt 24KB 27. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.vtt 23KB 35. Linear Discriminant Analysis (LDA)/3. LDA in Python.vtt 23KB 31. Artificial Neural Networks/22. ANN in R - Step 1.vtt 23KB 29. -------------------- Part 7 Natural Language Processing --------------------/24. Natural Language Processing in R - Step 10.vtt 23KB 15. Kernel SVM/7. Kernel SVM in R.vtt 23KB 24. Apriori/1. Apriori Intuition.vtt 23KB 39. XGBoost/4. XGBoost in R.vtt 23KB 32. Convolutional Neural Networks/9. Softmax & Cross-Entropy.vtt 22KB 27. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in R - Step 3.vtt 22KB 31. Artificial Neural Networks/2. The Neuron.vtt 22KB 27. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.vtt 22KB 5. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.vtt 22KB 4. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.vtt 21KB 8. Decision Tree Regression/3. Decision Tree Regression in Python.vtt 21KB 5. Multiple Linear Regression/8. Multiple Linear Regression Intuition - Step 5.vtt 21KB 21. K-Means Clustering/1. K-Means Clustering Intuition.vtt 21KB 12. Logistic Regression/1. Logistic Regression Intuition.vtt 21KB 16. Naive Bayes/2. Naive Bayes Intuition.vtt 21KB 29. -------------------- Part 7 Natural Language Processing --------------------/11. Natural Language Processing in Python - Step 8.vtt 21KB 2. -------------------- Part 1 Data Preprocessing --------------------/10. Feature Scaling.vtt 21KB 13. K-Nearest Neighbors (K-NN)/4. K-NN in R.vtt 21KB 24. Apriori/4. Apriori in R - Step 2.vtt 21KB 32. Convolutional Neural Networks/3. Step 1 - Convolution Operation.vtt 20KB 24. Apriori/7. Apriori in Python - Step 2.vtt 20KB 4. Simple Linear Regression/8. Simple Linear Regression in Python - Step 4.vtt 20KB 16. Naive Bayes/7. Naive Bayes in R.vtt 19KB 27. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.vtt 19KB 2. -------------------- Part 1 Data Preprocessing --------------------/6. Missing Data.vtt 19KB 32. Convolutional Neural Networks/2. What are convolutional neural networks.vtt 19KB 38. Model Selection/4. Grid Search in Python - Step 1.vtt 19KB 27. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in R - Step 2.vtt 19KB 27. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.vtt 19KB 36. Kernel PCA/2. Kernel PCA in Python.vtt 19KB 13. K-Nearest Neighbors (K-NN)/3. K-NN in Python.vtt 19KB 32. Convolutional Neural Networks/5. Step 2 - Pooling.vtt 18KB 38. Model Selection/6. Grid Search in R.vtt 18KB 31. Artificial Neural Networks/25. ANN in R - Step 4 (Last step).vtt 18KB 27. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in R - Step 1.vtt 18KB 38. Model Selection/2. k-Fold Cross Validation in Python.vtt 18KB 5. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.vtt 18KB 31. Artificial Neural Networks/12. ANN in Python - Step 1.vtt 17KB 21. K-Means Clustering/6. K-Means Clustering in R.vtt 17KB 17. Decision Tree Classification/3. Decision Tree Classification in Python.vtt 17KB 29. -------------------- Part 7 Natural Language Processing --------------------/23. Natural Language Processing in R - Step 9.vtt 17KB 31. Artificial Neural Networks/16. ANN in Python - Step 5.vtt 17KB 14. Support Vector Machine (SVM)/3. SVM in Python.vtt 17KB 32. Convolutional Neural Networks/15. CNN in Python - Step 4.vtt 17KB 31. Artificial Neural Networks/4. How do Neural Networks work.vtt 17KB 6. Polynomial Regression/12. R Regression Template.vtt 17KB 7. Support Vector Regression (SVR)/4. SVR in R.vtt 17KB 2. -------------------- Part 1 Data Preprocessing --------------------/4. Importing the Dataset.vtt 17KB 21. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.vtt 17KB 31. Artificial Neural Networks/5. How do Neural Networks learn.vtt 17KB 31. Artificial Neural Networks/24. ANN in R - Step 3.vtt 16KB 14. Support Vector Machine (SVM)/4. SVM in R.vtt 16KB 34. Principal Component Analysis (PCA)/6. PCA in R - Step 1.vtt 16KB 32. Convolutional Neural Networks/12. CNN in Python - Step 1.vtt 16KB 29. -------------------- Part 7 Natural Language Processing --------------------/4. Natural Language Processing in Python - Step 1.vtt 16KB 30. -------------------- Part 8 Deep Learning --------------------/2. What is Deep Learning.vtt 16KB 22. Hierarchical Clustering/3. Hierarchical Clustering Using Dendrograms.vtt 16KB 6. Polynomial Regression/3. Polynomial Regression in Python - Step 1.vtt 16KB 34. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.vtt 15KB 6. Polynomial Regression/4. Polynomial Regression in Python - Step 2.vtt 15KB 8. Decision Tree Regression/1. Decision Tree Regression Intuition.vtt 15KB 29. -------------------- Part 7 Natural Language Processing --------------------/7. Natural Language Processing in Python - Step 4.vtt 15KB 6. Polynomial Regression/7. Python Regression Template.vtt 15KB 34. Principal Component Analysis (PCA)/7. PCA in R - Step 2.vtt 15KB 19. Evaluating Classification Models Performance/4. CAP Curve.vtt 15KB 15. Kernel SVM/3. The Kernel Trick.vtt 14KB 16. Naive Bayes/4. Naive Bayes Intuition (Extras).vtt 14KB 14. Support Vector Machine (SVM)/1. SVM Intuition.vtt 14KB 25. Eclat/3. Eclat in R.vtt 14KB 4. Simple Linear Regression/5. Simple Linear Regression in Python - Step 1.vtt 14KB 5. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 2.vtt 14KB 29. -------------------- Part 7 Natural Language Processing --------------------/5. Natural Language Processing in Python - Step 2.vtt 14KB 6. Polynomial Regression/9. Polynomial Regression in R - Step 2.vtt 14KB 38. Model Selection/5. Grid Search in Python - Step 2.vtt 13KB 5. Multiple Linear Regression/12. Multiple Linear Regression in Python - Backward Elimination - Preparation.vtt 13KB 10. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.vtt 13KB 34. Principal Component Analysis (PCA)/5. PCA in Python - Step 3.vtt 13KB 22. Hierarchical Clustering/2. Hierarchical Clustering How Dendrograms Work.vtt 13KB 5. Multiple Linear Regression/14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.vtt 13KB 2. -------------------- Part 1 Data Preprocessing --------------------/11. And here is our Data Preprocessing Template!.vtt 13KB 6. Polynomial Regression/8. Polynomial Regression in R - Step 1.vtt 13KB 29. -------------------- Part 7 Natural Language Processing --------------------/13. Natural Language Processing in Python - Step 10.vtt 12KB 31. Artificial Neural Networks/6. Gradient Descent.vtt 12KB 16. Naive Bayes/6. Naive Bayes in Python.vtt 12KB 39. XGBoost/2. XGBoost in Python - Step 1.vtt 12KB 10. Evaluating Regression Models Performance/4. Interpreting Linear Regression Coefficients.vtt 12KB 21. K-Means Clustering/2. K-Means Random Initialization Trap.vtt 12KB 10. Evaluating Regression Models Performance/3. Evaluating Regression Models Performance - Homework's Final Part.vtt 12KB 29. -------------------- Part 7 Natural Language Processing --------------------/16. Natural Language Processing in R - Step 2.vtt 11KB 32. Convolutional Neural Networks/21. CNN in Python - Step 10.vtt 11KB 4. Simple Linear Regression/6. Simple Linear Regression in Python - Step 2.vtt 11KB 1. Welcome to the course!/8. Installing Python and Anaconda (Mac, Linux & Windows).vtt 11KB 31. Artificial Neural Networks/7. Stochastic Gradient Descent.vtt 11KB 5. Multiple Linear Regression/20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.vtt 11KB 31. Artificial Neural Networks/3. The Activation Function.vtt 11KB 5. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 1.vtt 11KB 34. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.vtt 10KB 19. Evaluating Classification Models Performance/1. False Positives & False Negatives.vtt 10KB 7. Support Vector Regression (SVR)/2. SVR Intuition.vtt 10KB 28. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.vtt 10KB 5. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 3.vtt 10KB 2. -------------------- Part 1 Data Preprocessing --------------------/2. Get the dataset.vtt 9KB 15. Kernel SVM/2. Mapping to a higher dimension.vtt 9KB 9. Random Forest Regression/1. Random Forest Regression Intuition.vtt 9KB 29. -------------------- Part 7 Natural Language Processing --------------------/8. Natural Language Processing in Python - Step 5.vtt 9KB 31. Artificial Neural Networks/21. ANN in Python - Step 10.vtt 9KB 4. Simple Linear Regression/7. Simple Linear Regression in Python - Step 3.vtt 9KB 31. Artificial Neural Networks/23. ANN in R - Step 2.vtt 9KB 29. -------------------- Part 7 Natural Language Processing --------------------/17. Natural Language Processing in R - Step 3.vtt 9KB 29. -------------------- Part 7 Natural Language Processing --------------------/10. Natural Language Processing in Python - Step 7.vtt 9KB 22. Hierarchical Clustering/6. HC in Python - Step 2.vtt 9KB 16. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).vtt 9KB 19. Evaluating Classification Models Performance/5. CAP Curve Analysis.vtt 8KB 14. Support Vector Machine (SVM)/4.1 SVM.zip.zip 8KB 31. Artificial Neural Networks/20. ANN in Python - Step 9.vtt 8KB 1. Welcome to the course!/3. Why Machine Learning is the Future.vtt 8KB 32. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.vtt 8KB 32. Convolutional Neural Networks/18. CNN in Python - Step 7.vtt 8KB 4. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.vtt 8KB 1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).vtt 8KB 12. Logistic Regression/9. Logistic Regression in R - Step 1.vtt 8KB 4. Simple Linear Regression/3. Simple Linear Regression Intuition - Step 1.vtt 8KB 5. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.vtt 7KB 22. Hierarchical Clustering/11. HC in R - Step 2.vtt 7KB 29. -------------------- Part 7 Natural Language Processing --------------------/20. Natural Language Processing in R - Step 6.vtt 7KB 29. -------------------- Part 7 Natural Language Processing --------------------/12. Natural Language Processing in Python - Step 9.vtt 7KB 13. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.vtt 7KB 25. Eclat/1. Eclat Intuition.vtt 7KB 6. Polynomial Regression/1. Polynomial Regression Intuition.vtt 7KB 2. -------------------- Part 1 Data Preprocessing --------------------/3. Importing the Libraries.vtt 7KB 29. -------------------- Part 7 Natural Language Processing --------------------/22. Natural Language Processing in R - Step 8.vtt 7KB 22. Hierarchical Clustering/7. HC in Python - Step 3.vtt 7KB 4. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.vtt 7KB 22. Hierarchical Clustering/5. HC in Python - Step 1.vtt 7KB 19. Evaluating Classification Models Performance/2. Confusion Matrix.vtt 7KB 32. Convolutional Neural Networks/17. CNN in Python - Step 6.vtt 7KB 12. Logistic Regression/11. Logistic Regression in R - Step 3.vtt 7KB 32. Convolutional Neural Networks/16. CNN in Python - Step 5.vtt 7KB 31. Artificial Neural Networks/10. Business Problem Description.vtt 6KB 10. Evaluating Regression Models Performance/1. R-Squared Intuition.vtt 6KB 18. Random Forest Classification/1. Random Forest Classification Intuition.vtt 6KB 12. Logistic Regression/6. Logistic Regression in Python - Step 4.vtt 6KB 31. Artificial Neural Networks/8. Backpropagation.vtt 6KB 5. Multiple Linear Regression/18. Multiple Linear Regression in R - Step 3.vtt 6KB 29. -------------------- Part 7 Natural Language Processing --------------------/2. Natural Language Processing Intuition.vtt 6KB 22. Hierarchical Clustering/9. HC in Python - Step 5.vtt 6KB 12. Logistic Regression/14. R Classification Template.vtt 6KB 22. Hierarchical Clustering/8. HC in Python - Step 4.vtt 6KB 22. Hierarchical Clustering/10. HC in R - Step 1.vtt 6KB 12. Logistic Regression/8. Python Classification Template.vtt 5KB 32. Convolutional Neural Networks/8. Summary.vtt 5KB 28. Thompson Sampling/5. Thompson Sampling in Python - Step 2.vtt 5KB 31. Artificial Neural Networks/18. ANN in Python - Step 7.vtt 5KB 5. Multiple Linear Regression/2. Dataset + Business Problem Description.vtt 5KB 29. -------------------- Part 7 Natural Language Processing --------------------/21. Natural Language Processing in R - Step 7.vtt 5KB 4. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.vtt 5KB 28. Thompson Sampling/7. Thompson Sampling in R - Step 2.vtt 5KB 1. Welcome to the course!/1. Applications of Machine Learning.vtt 5KB 32. Convolutional Neural Networks/1. Plan of attack.vtt 5KB 31. Artificial Neural Networks/14. ANN in Python - Step 3.vtt 5KB 40. Bonus Lectures/1. YOUR SPECIAL BONUS.html 5KB 35. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.vtt 5KB 34. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.vtt 4KB 12. Logistic Regression/4. Logistic Regression in Python - Step 2.vtt 4KB 27. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.vtt 4KB 15. Kernel SVM/4. Types of Kernel Functions.vtt 4KB 22. Hierarchical Clustering/12. HC in R - Step 3.vtt 4KB 12. Logistic Regression/2. How to get the dataset.vtt 4KB 13. K-Nearest Neighbors (K-NN)/2. How to get the dataset.vtt 4KB 14. Support Vector Machine (SVM)/2. How to get the dataset.vtt 4KB 15. Kernel SVM/5. How to get the dataset.vtt 4KB 16. Naive Bayes/5. How to get the dataset.vtt 4KB 17. Decision Tree Classification/2. How to get the dataset.vtt 4KB 18. Random Forest Classification/2. How to get the dataset.vtt 4KB 21. K-Means Clustering/4. How to get the dataset.vtt 4KB 22. Hierarchical Clustering/4. How to get the dataset.vtt 4KB 24. Apriori/2. How to get the dataset.vtt 4KB 25. Eclat/2. How to get the dataset.vtt 4KB 27. Upper Confidence Bound (UCB)/3. How to get the dataset.vtt 4KB 28. Thompson Sampling/3. How to get the dataset.vtt 4KB 29. -------------------- Part 7 Natural Language Processing --------------------/3. How to get the dataset.vtt 4KB 31. Artificial Neural Networks/9. How to get the dataset.vtt 4KB 32. Convolutional Neural Networks/10. How to get the dataset.vtt 4KB 34. Principal Component Analysis (PCA)/2. How to get the dataset.vtt 4KB 35. Linear Discriminant Analysis (LDA)/2. How to get the dataset.vtt 4KB 36. Kernel PCA/1. How to get the dataset.vtt 4KB 39. XGBoost/1. How to get the dataset.vtt 4KB 4. Simple Linear Regression/1. How to get the dataset.vtt 4KB 5. Multiple Linear Regression/1. How to get the dataset.vtt 4KB 6. Polynomial Regression/2. How to get the dataset.vtt 4KB 7. Support Vector Regression (SVR)/1. How to get the dataset.vtt 4KB 8. Decision Tree Regression/2. How to get the dataset.vtt 4KB 9. Random Forest Regression/2. How to get the dataset.vtt 4KB 29. -------------------- Part 7 Natural Language Processing --------------------/18. Natural Language Processing in R - Step 4.vtt 4KB 31. Artificial Neural Networks/17. ANN in Python - Step 6.vtt 4KB 4. Simple Linear Regression/4. Simple Linear Regression Intuition - Step 2.vtt 4KB 32. Convolutional Neural Networks/13. CNN in Python - Step 2.vtt 4KB 12. Logistic Regression/10. Logistic Regression in R - Step 2.vtt 4KB 15. Kernel SVM/1. Kernel SVM Intuition.vtt 4KB 32. Convolutional Neural Networks/19. CNN in Python - Step 8.vtt 4KB 27. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 4.vtt 4KB 29. -------------------- Part 7 Natural Language Processing --------------------/9. Natural Language Processing in Python - Step 6.vtt 4KB 19. Evaluating Classification Models Performance/6. Conclusion of Part 3 - Classification.html 4KB 4. Simple Linear Regression/2. Dataset + Business Problem Description.vtt 4KB 22. Hierarchical Clustering/14. HC in R - Step 5.vtt 4KB 12. Logistic Regression/5. Logistic Regression in Python - Step 3.vtt 4KB 5. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.vtt 4KB 12. Logistic Regression/12. Logistic Regression in R - Step 4.vtt 4KB 31. Artificial Neural Networks/1. Plan of attack.vtt 4KB 22. Hierarchical Clustering/13. HC in R - Step 4.vtt 3KB 31. Artificial Neural Networks/15. ANN in Python - Step 4.vtt 3KB 1. Welcome to the course!/4. Important notes, tips & tricks for this course.html 3KB 5. Multiple Linear Regression/6. Multiple Linear Regression Intuition - Step 4.vtt 3KB 19. Evaluating Classification Models Performance/3. Accuracy Paradox.vtt 3KB 10. Evaluating Regression Models Performance/5. Conclusion of Part 2 - Regression.html 3KB 2. -------------------- Part 1 Data Preprocessing --------------------/8. WARNING - Update.html 3KB 29. -------------------- Part 7 Natural Language Processing --------------------/19. Natural Language Processing in R - Step 5.vtt 3KB 32. Convolutional Neural Networks/22. CNN in R.html 2KB 1. Welcome to the course!/2. BONUS Learning Paths.html 2KB 2. -------------------- Part 1 Data Preprocessing --------------------/1. Welcome to Part 1 - Data Preprocessing.vtt 2KB 32. Convolutional Neural Networks/6. Step 3 - Flattening.vtt 2KB 5. Multiple Linear Regression/15. Multiple Linear Regression in Python - Automatic Backward Elimination.html 2KB 39. XGBoost/5. THANK YOU bonus video.vtt 2KB 1. Welcome to the course!/13. FAQBot!.html 2KB 29. -------------------- Part 7 Natural Language Processing --------------------/1. Welcome to Part 7 - Natural Language Processing.html 2KB 32. Convolutional Neural Networks/14. CNN in Python - Step 3.vtt 2KB 1. Welcome to the course!/5. This PDF resource will help you a lot.html 1KB 5. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 1.vtt 1KB 31. Artificial Neural Networks/11. Installing Keras.html 1KB 29. -------------------- Part 7 Natural Language Processing --------------------/25. Homework Challenge.html 1KB 29. -------------------- Part 7 Natural Language Processing --------------------/14. Homework Challenge.html 1KB 5. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 2.vtt 1KB 1. Welcome to the course!/9. Update Recommended Anaconda Version.html 1KB 33. -------------------- Part 9 Dimensionality Reduction --------------------/1. Welcome to Part 9 - Dimensionality Reduction.html 1KB 1. Welcome to the course!/11. BONUS Meet your instructors.html 1KB 1. Welcome to the course!/6. The whole code folder of the course.html 1KB 32. Convolutional Neural Networks/11. Installing Keras.html 927B 37. -------------------- Part 10 Model Selection & Boosting --------------------/1. Welcome to Part 10 - Model Selection & Boosting.html 899B 3. -------------------- Part 2 Regression --------------------/1. Welcome to Part 2 - Regression.html 875B 30. -------------------- Part 8 Deep Learning --------------------/1. Welcome to Part 8 - Deep Learning.html 870B 11. -------------------- Part 3 Classification --------------------/1. Welcome to Part 3 - Classification.html 831B 26. -------------------- Part 6 Reinforcement Learning --------------------/1. Welcome to Part 6 - Reinforcement Learning.html 804B 20. -------------------- Part 4 Clustering --------------------/1. Welcome to Part 4 - Clustering.html 734B 5. Multiple Linear Regression/21. Multiple Linear Regression in R - Automatic Backward Elimination.html 726B 5. Multiple Linear Regression/7. Prerequisites What is the P-Value.html 676B 1. Welcome to the course!/12. Some Additional Resources.html 551B 22. Hierarchical Clustering/16. Conclusion of Part 4 - Clustering.html 516B 23. -------------------- Part 5 Association Rule Learning --------------------/1. Welcome to Part 5 - Association Rule Learning.html 425B courseupload.com.webloc 248B 12. Logistic Regression/15. Logistic Regression.html 118B 13. K-Nearest Neighbors (K-NN)/5. K-Nearest Neighbor.html 118B 2. -------------------- Part 1 Data Preprocessing --------------------/12. Data Preprocessing.html 118B 21. K-Means Clustering/7. K-Means Clustering.html 118B 22. Hierarchical Clustering/15. Hierarchical Clustering.html 118B 4. Simple Linear Regression/13. Simple Linear Regression.html 118B 5. Multiple Linear Regression/22. Multiple Linear Regression.html 118B