[UdemyCourseDownloader] Zero to Deep Learning™ with Python and Keras 收录时间:2019-05-31 14:54:52 文件大小:2GB 下载次数:50 最近下载:2020-10-17 22:57:27 磁力链接: magnet:?xt=urn:btih:2e9c70ab3b69012fbdcd3f3eb5992154ae6c3573 立即下载 复制链接 文件列表 1. Welcome to the course!/5. Installation Video Guide.mp4 45MB 3. Machine Learning/22. Exercise 2 solution.mp4 43MB 3. Machine Learning/8. Linear Regression code along.mp4 40MB 3. Machine Learning/1. Section 3 Intro.mp4 39MB 3. Machine Learning/20. Exercise 1 solution.mp4 37MB 6. Convolutional Neural Networks/1. Section 6 Intro.mp4 35MB 4. Deep Learning Intro/7. Multiclass classification code along.mp4 34MB 1. Welcome to the course!/2. Introduction.mp4 34MB 5. Gradient Descent/10. Learning Rate code along.mp4 33MB 1. Welcome to the course!/8. Your first deep learning model.mp4 33MB 2. Data/5. Plotting with Matplotlib.mp4 33MB 5. Gradient Descent/17. Inner Layers Visualization code along.mp4 32MB 2. Data/3. Data exploration with Pandas code along.mp4 31MB 4. Deep Learning Intro/1. Section 4 Intro.mp4 31MB 5. Gradient Descent/1. Section 5 Intro.mp4 31MB 1. Welcome to the course!/1. Welcome to the course!.mp4 27MB 9. Improving performance/14. Movies Reviews Sentiment Analysis code along.mp4 27MB 1. Welcome to the course!/4. Download and install Anaconda.mp4 26MB 4. Deep Learning Intro/13. Exercise 2 Solution.mp4 25MB 4. Deep Learning Intro/11. Exercise 1 Solution.mp4 25MB 8. Recurrent Neural Networks/1. Section 8 Intro.mp4 24MB 9. Improving performance/19. Exercise 3 Presentation.mp4 24MB 6. Convolutional Neural Networks/22. Exercise 2 Presentation.mp4 24MB 1. Welcome to the course!/3. Real world applications of deep learning.mp4 24MB 3. Machine Learning/12. Classification code along.mp4 23MB 2. Data/1. Section 2 Intro.mp4 22MB 8. Recurrent Neural Networks/9. Rolling Windows code along.mp4 21MB 4. Deep Learning Intro/5. Neural Networks code along.mp4 21MB 4. Deep Learning Intro/15. Exercise 3 Solution.mp4 21MB 6. Convolutional Neural Networks/4. MNIST Classification code along.mp4 20MB 5. Gradient Descent/8. Numpy Arrays code along.mp4 19MB 1. Welcome to the course!/7. Course Folder Walkthrough.mp4 19MB 9. Improving performance/1. Section 9 Intro.mp4 19MB 9. Improving performance/3. Learning curves code along.mp4 19MB 3. Machine Learning/6. Cost Function code along.mp4 18MB 5. Gradient Descent/19. Exercise 1 Solution.mp4 18MB 6. Convolutional Neural Networks/20. Exercise 1 Presentation.mp4 17MB 6. Convolutional Neural Networks/7. Tensor Math code along.mp4 17MB 8. Recurrent Neural Networks/6. Time Series Forecasting code along.mp4 16MB 3. Machine Learning/18. Feature Preprocessing code along.mp4 16MB 9. Improving performance/10. Image Generator code along.mp4 15MB 9. Improving performance/5. Batch Normalization code along.mp4 15MB 6. Convolutional Neural Networks/13. Convolutional Layers code along.mp4 14MB 3. Machine Learning/11. Classification.mp4 14MB 2. Data/7. Images and Sound in Jupyter.mp4 14MB 6. Convolutional Neural Networks/17. Convolutional Neural Networks code along.mp4 14MB 4. Deep Learning Intro/17. Exercise 4 Solution.mp4 14MB 2. Data/12. Exercise 2 Solution.mp4 14MB 5. Gradient Descent/16. Initialization code along.mp4 13MB 5. Gradient Descent/12. Gradient Descent code along.mp4 13MB 6. Convolutional Neural Networks/21. Exercise 1 Solution.mp4 13MB 5. Gradient Descent/23. Exercise 3 Solution.mp4 13MB 5. Gradient Descent/6. Fully Connected Backpropagation.mp4 12MB 5. Gradient Descent/4. Chain Rule.mp4 12MB 3. Machine Learning/14. Cross Validation.mp4 12MB 6. Convolutional Neural Networks/12. Convolutional Layers.mp4 12MB 2. Data/2. Tabular data.mp4 12MB 8. Recurrent Neural Networks/5. LSTM and GRU.mp4 11MB 2. Data/6. Unstructured Data.mp4 11MB 3. Machine Learning/16. Confusion matrix.mp4 11MB 5. Gradient Descent/25. Exercise 4 Solution.mp4 11MB 5. Gradient Descent/21. Exercise 2 Solution.mp4 11MB 6. Convolutional Neural Networks/23. Exercise 2 Solution.mp4 11MB 5. Gradient Descent/15. Optimizers code along.mp4 11MB 8. Recurrent Neural Networks/10. Exercise 1 Presentation.mp4 11MB 5. Gradient Descent/2. Derivatives and Gradient.mp4 10MB 8. Recurrent Neural Networks/2. Time Series.mp4 10MB 3. Machine Learning/3. Supervised Learning.mp4 10MB 6. Convolutional Neural Networks/6. Images as Tensors.mp4 10MB 3. Machine Learning/10. Evaluating Performance code along.mp4 10MB 4. Deep Learning Intro/6. Multiple Outputs.mp4 10MB 4. Deep Learning Intro/2. Deep Learning successes.mp4 10MB 4. Deep Learning Intro/9. Feed forward.mp4 10MB 4. Deep Learning Intro/3. Neural Networks.mp4 10MB 3. Machine Learning/4. Linear Regression.mp4 10MB 3. Machine Learning/15. Cross Validation code along.mp4 10MB 8. Recurrent Neural Networks/7. Time Series Forecasting with LSTM code along.mp4 9MB 2. Data/10. Exercise 1 Solution.mp4 9MB 3. Machine Learning/13. Overfitting.mp4 9MB 3. Machine Learning/2. Machine Learning Problems.mp4 9MB 5. Gradient Descent/14. Optimizers.mp4 9MB 2. Data/4. Visual data Exploration.mp4 9MB 3. Machine Learning/9. Evaluating Performance.mp4 9MB 8. Recurrent Neural Networks/3. Sequence problems.mp4 9MB 3. Machine Learning/17. Confusion Matrix code along.mp4 9MB 5. Gradient Descent/7. Matrix Notation.mp4 9MB 4. Deep Learning Intro/8. Activation Functions.mp4 9MB 4. Deep Learning Intro/4. Deeper Networks.mp4 8MB 5. Gradient Descent/26. Tensorboard.mp4 8MB 8. Recurrent Neural Networks/12. Exercise 2 Presentation.mp4 8MB 6. Convolutional Neural Networks/2. Features from Pixels.mp4 8MB 8. Recurrent Neural Networks/11. Exercise 1 Solution.mp4 8MB 2. Data/18. Exercise 5 Solution.mp4 8MB 9. Improving performance/15. Exercise 1 Presentation.mp4 8MB 3. Machine Learning/21. Exercise 2 Presentation.mp4 7MB 5. Gradient Descent/13. EWMA.mp4 7MB 6. Convolutional Neural Networks/5. Beyond Pixels.mp4 7MB 5. Gradient Descent/3. Backpropagation intuition.mp4 7MB 5. Gradient Descent/5. Derivative Calculation.mp4 7MB 2. Data/14. Exercise 3 Solution.mp4 7MB 9. Improving performance/11. Hyperparameter search.mp4 7MB 6. Convolutional Neural Networks/10. Convolution in 2 D.mp4 7MB 6. Convolutional Neural Networks/8. Convolution in 1 D.mp4 7MB 9. Improving performance/12. Embeddings.mp4 7MB 3. Machine Learning/19. Exercise 1 Presentation.mp4 6MB 5. Gradient Descent/11. Gradient Descent.mp4 6MB 6. Convolutional Neural Networks/11. Image Filters code along.mp4 6MB 9. Improving performance/7. Dropout and Regularization code along.mp4 6MB 9. Improving performance/8. Data Augmentation.mp4 6MB 3. Machine Learning/5. Cost Function.mp4 6MB 9. Improving performance/6. Dropout.mp4 6MB 2. Data/8. Feature Engineering.mp4 6MB 9. Improving performance/13. Embeddings code along.mp4 6MB 8. Recurrent Neural Networks/4. Vanilla RNN.mp4 6MB 9. Improving performance/17. Exercise 2 Presentation.mp4 5MB 9. Improving performance/2. Learning curves.mp4 5MB 6. Convolutional Neural Networks/15. Pooling Layers code along.mp4 5MB 6. Convolutional Neural Networks/19. Beyond Images.mp4 5MB 6. Convolutional Neural Networks/18. Weights in CNNs.mp4 5MB 6. Convolutional Neural Networks/9. Convolution in 1 D code along.mp4 5MB 3. Machine Learning/7. Finding the best model.mp4 5MB 8. Recurrent Neural Networks/8. Rolling Windows.mp4 5MB 9. Improving performance/9. Continuous Learning.mp4 5MB 4. Deep Learning Intro/10. Exercise 1 Presentation.mp4 5MB 6. Convolutional Neural Networks/16. Convolutional Neural Networks.mp4 4MB 2. Data/16. Exercise 4 Solution.mp4 4MB 6. Convolutional Neural Networks/3. MNIST Classification.mp4 4MB 9. Improving performance/4. Batch Normalization.mp4 4MB 5. Gradient Descent/24. Exercise 4 Presentation.mp4 4MB 5. Gradient Descent/9. Learning Rate.mp4 4MB 5. Gradient Descent/18. Exercise 1 Presentation.mp4 4MB 2. Data/9. Exercise 1 Presentation.mp4 3MB 6. Convolutional Neural Networks/14. Pooling Layers.mp4 3MB 4. Deep Learning Intro/12. Exercise 2 Presentation.mp4 3MB 5. Gradient Descent/22. Exercise 3 Presentation.mp4 3MB 4. Deep Learning Intro/14. Exercise 3 Presentation.mp4 3MB 5. Gradient Descent/20. Exercise 2 Presentation.mp4 2MB 2. Data/17. Exercise 5 Presentation.mp4 2MB 4. Deep Learning Intro/16. Exercise 4 Presentation.mp4 2MB 2. Data/11. Exercise 2 Presentation.mp4 2MB 2. Data/13. Exercise 3 Presentation.mp4 2MB 2. Data/15. Exercise 4 Presentation.mp4 2MB 1. Welcome to the course!/5. Installation Video Guide.vtt 15KB 3. Machine Learning/20. Exercise 1 solution.vtt 11KB 3. Machine Learning/22. Exercise 2 solution.vtt 11KB 3. Machine Learning/8. Linear Regression code along.vtt 10KB 2. Data/3. Data exploration with Pandas code along.vtt 10KB 1. Welcome to the course!/3. Real world applications of deep learning.vtt 10KB 9. Improving performance/14. Movies Reviews Sentiment Analysis code along.vtt 9KB 1. Welcome to the course!/8. Your first deep learning model.vtt 9KB 4. Deep Learning Intro/7. Multiclass classification code along.vtt 8KB 5. Gradient Descent/10. Learning Rate code along.vtt 8KB 3. Machine Learning/11. Classification.vtt 8KB 3. Machine Learning/12. Classification code along.vtt 7KB 4. Deep Learning Intro/13. Exercise 2 Solution.vtt 7KB 5. Gradient Descent/17. Inner Layers Visualization code along.vtt 7KB 5. Gradient Descent/8. Numpy Arrays code along.vtt 7KB 3. Machine Learning/14. Cross Validation.vtt 7KB 4. Deep Learning Intro/11. Exercise 1 Solution.vtt 7KB 2. Data/2. Tabular data.vtt 6KB 8. Recurrent Neural Networks/5. LSTM and GRU.vtt 6KB 4. Deep Learning Intro/5. Neural Networks code along.vtt 6KB 8. Recurrent Neural Networks/6. Time Series Forecasting code along.vtt 6KB 3. Machine Learning/16. Confusion matrix.vtt 6KB 3. Machine Learning/6. Cost Function code along.vtt 6KB 6. Convolutional Neural Networks/12. Convolutional Layers.vtt 6KB 9. Improving performance/3. Learning curves code along.vtt 6KB 8. Recurrent Neural Networks/9. Rolling Windows code along.vtt 6KB 8. Recurrent Neural Networks/2. Time Series.vtt 5KB 9. Improving performance/10. Image Generator code along.vtt 5KB 6. Convolutional Neural Networks/4. MNIST Classification code along.vtt 5KB 3. Machine Learning/13. Overfitting.vtt 5KB 3. Machine Learning/9. Evaluating Performance.vtt 5KB 4. Deep Learning Intro/17. Exercise 4 Solution.vtt 5KB 6. Convolutional Neural Networks/17. Convolutional Neural Networks code along.vtt 5KB 2. Data/6. Unstructured Data.vtt 5KB 9. Improving performance/5. Batch Normalization code along.vtt 5KB 4. Deep Learning Intro/6. Multiple Outputs.vtt 5KB 6. Convolutional Neural Networks/6. Images as Tensors.vtt 5KB 6. Convolutional Neural Networks/13. Convolutional Layers code along.vtt 5KB 5. Gradient Descent/2. Derivatives and Gradient.vtt 5KB 1. Welcome to the course!/7. Course Folder Walkthrough.vtt 5KB 2. Data/4. Visual data Exploration.vtt 5KB 3. Machine Learning/18. Feature Preprocessing code along.vtt 5KB 4. Deep Learning Intro/3. Neural Networks.vtt 5KB 3. Machine Learning/3. Supervised Learning.vtt 5KB 5. Gradient Descent/19. Exercise 1 Solution.vtt 5KB 8. Recurrent Neural Networks/3. Sequence problems.vtt 5KB 4. Deep Learning Intro/9. Feed forward.vtt 5KB 5. Gradient Descent/14. Optimizers.vtt 5KB 4. Deep Learning Intro/2. Deep Learning successes.vtt 5KB 3. Machine Learning/4. Linear Regression.vtt 5KB 5. Gradient Descent/13. EWMA.vtt 4KB 4. Deep Learning Intro/8. Activation Functions.vtt 4KB 3. Machine Learning/10. Evaluating Performance code along.vtt 4KB 2. Data/7. Images and Sound in Jupyter.vtt 4KB 5. Gradient Descent/23. Exercise 3 Solution.vtt 4KB 6. Convolutional Neural Networks/21. Exercise 1 Solution.vtt 4KB 5. Gradient Descent/16. Initialization code along.vtt 4KB 5. Gradient Descent/7. Matrix Notation.vtt 4KB 9. Improving performance/11. Hyperparameter search.vtt 4KB 5. Gradient Descent/3. Backpropagation intuition.vtt 4KB 3. Machine Learning/15. Cross Validation code along.vtt 4KB 5. Gradient Descent/4. Chain Rule.vtt 4KB 5. Gradient Descent/6. Fully Connected Backpropagation.vtt 4KB 5. Gradient Descent/15. Optimizers code along.vtt 4KB 5. Gradient Descent/5. Derivative Calculation.vtt 4KB 2. Data/12. Exercise 2 Solution.vtt 4KB 4. Deep Learning Intro/4. Deeper Networks.vtt 4KB 6. Convolutional Neural Networks/5. Beyond Pixels.vtt 3KB 3. Machine Learning/2. Machine Learning Problems.vtt 3KB 5. Gradient Descent/21. Exercise 2 Solution.vtt 3KB 6. Convolutional Neural Networks/23. Exercise 2 Solution.vtt 3KB 9. Improving performance/12. Embeddings.vtt 3KB 6. Convolutional Neural Networks/2. Features from Pixels.vtt 3KB 3. Machine Learning/17. Confusion Matrix code along.vtt 3KB 5. Gradient Descent/25. Exercise 4 Solution.vtt 3KB 5. Gradient Descent/11. Gradient Descent.vtt 3KB 6. Convolutional Neural Networks/10. Convolution in 2 D.vtt 3KB 3. Machine Learning/5. Cost Function.vtt 3KB 9. Improving performance/2. Learning curves.vtt 3KB 2. Data/10. Exercise 1 Solution.vtt 3KB 5. Gradient Descent/26. Tensorboard.vtt 3KB 8. Recurrent Neural Networks/7. Time Series Forecasting with LSTM code along.vtt 3KB 4. Deep Learning Intro/15. Exercise 3 Solution.vtt 3KB 5. Gradient Descent/12. Gradient Descent code along.vtt 3KB 6. Convolutional Neural Networks/22. Exercise 2 Presentation.vtt 3KB 6. Convolutional Neural Networks/8. Convolution in 1 D.vtt 3KB 3. Machine Learning/21. Exercise 2 Presentation.vtt 3KB 8. Recurrent Neural Networks/8. Rolling Windows.vtt 3KB 9. Improving performance/8. Data Augmentation.vtt 3KB 8. Recurrent Neural Networks/4. Vanilla RNN.vtt 3KB 3. Machine Learning/19. Exercise 1 Presentation.vtt 3KB 9. Improving performance/6. Dropout.vtt 3KB 3. Machine Learning/7. Finding the best model.vtt 3KB 9. Improving performance/9. Continuous Learning.vtt 3KB 1. Welcome to the course!/4. Download and install Anaconda.vtt 3KB 2. Data/8. Feature Engineering.vtt 3KB 6. Convolutional Neural Networks/18. Weights in CNNs.vtt 3KB 6. Convolutional Neural Networks/19. Beyond Images.vtt 2KB 9. Improving performance/19. Exercise 3 Presentation.vtt 2KB 9. Improving performance/13. Embeddings code along.vtt 2KB 9. Improving performance/7. Dropout and Regularization code along.vtt 2KB 6. Convolutional Neural Networks/11. Image Filters code along.vtt 2KB 3. Machine Learning/1. Section 3 Intro.vtt 2KB 6. Convolutional Neural Networks/16. Convolutional Neural Networks.vtt 2KB 5. Gradient Descent/9. Learning Rate.vtt 2KB 7. Cloud GPUs/2. Floyd GPU notebook setup.html 2KB 1. Welcome to the course!/2. Introduction.vtt 2KB 7. Cloud GPUs/1. Google Colaboratory GPU notebook setup.html 2KB 8. Recurrent Neural Networks/11. Exercise 1 Solution.vtt 2KB 9. Improving performance/4. Batch Normalization.vtt 2KB 6. Convolutional Neural Networks/15. Pooling Layers code along.vtt 2KB 2. Data/9. Exercise 1 Presentation.vtt 2KB 6. Convolutional Neural Networks/20. Exercise 1 Presentation.vtt 2KB 5. Gradient Descent/24. Exercise 4 Presentation.vtt 2KB 2. Data/14. Exercise 3 Solution.vtt 2KB 6. Convolutional Neural Networks/1. Section 6 Intro.vtt 2KB 1. Welcome to the course!/1. Welcome to the course!.vtt 2KB 4. Deep Learning Intro/10. Exercise 1 Presentation.vtt 2KB 5. Gradient Descent/22. Exercise 3 Presentation.vtt 2KB 5. Gradient Descent/1. Section 5 Intro.vtt 2KB 4. Deep Learning Intro/1. Section 4 Intro.vtt 2KB 4. Deep Learning Intro/14. Exercise 3 Presentation.vtt 1KB 4. Deep Learning Intro/12. Exercise 2 Presentation.vtt 1KB 6. Convolutional Neural Networks/3. MNIST Classification.vtt 1KB 2. Data/18. Exercise 5 Solution.vtt 1KB 2. Data/16. Exercise 4 Solution.vtt 1KB 5. Gradient Descent/18. Exercise 1 Presentation.vtt 1KB 6. Convolutional Neural Networks/14. Pooling Layers.vtt 1KB 8. Recurrent Neural Networks/12. Exercise 2 Presentation.vtt 1KB 8. Recurrent Neural Networks/10. Exercise 1 Presentation.vtt 1KB 6. Convolutional Neural Networks/9. Convolution in 1 D code along.vtt 1KB 2. Data/17. Exercise 5 Presentation.vtt 1KB 2. Data/11. Exercise 2 Presentation.vtt 1KB 5. Gradient Descent/20. Exercise 2 Presentation.vtt 1KB 8. Recurrent Neural Networks/1. Section 8 Intro.vtt 1KB 4. Deep Learning Intro/16. Exercise 4 Presentation.vtt 1KB 1. Welcome to the course!/6. Obtain the code for the course.html 1KB 9. Improving performance/15. Exercise 1 Presentation.vtt 1KB 2. Data/1. Section 2 Intro.vtt 1KB 9. Improving performance/1. Section 9 Intro.vtt 1019B 9. Improving performance/17. Exercise 2 Presentation.vtt 984B 2. Data/13. Exercise 3 Presentation.vtt 893B 2. Data/15. Exercise 4 Presentation.vtt 784B udemycoursedownloader.com.url 132B 1. Welcome to the course!/5.2 Link to Github notebooks.html 120B 2. Data/5. Plotting with Matplotlib.vtt 111B 1. Welcome to the course!/5.1 Link to Tensorflow install docs.html 96B Udemy Course downloader.txt 94B 8. Recurrent Neural Networks/13. Exercise 2 Solution.html 26B 9. Improving performance/16. Exercise 1 Solution.html 26B 9. Improving performance/18. Exercise 2 Solution.html 26B 6. Convolutional Neural Networks/7. Tensor Math code along.vtt 8B