[Udemy] Practical AI with Python and Reinforcement Learning ()
- 收录时间:2022-03-22 05:35:10
- 文件大小:7GB
- 下载次数:1
- 最近下载:2022-03-22 05:35:10
- 磁力链接:
-
文件列表
- 11 Classical Q Learning/019 Q-Learning Exercise Project - Solutions.mp4 177MB
- 10 Open AI Gym Overview/003 OpenAI Gym - Documentation Tour.mp4 147MB
- 07 Artificial Neural Network and TensorFlow Basics/027 Tensorboard.mp4 144MB
- 07 Artificial Neural Network and TensorFlow Basics/020 Keras Project Solution - Exploratoy Data Analysis.mp4 144MB
- 10 Open AI Gym Overview/005 OpenAI Gym - Working with the Environment.mp4 138MB
- 07 Artificial Neural Network and TensorFlow Basics/012 Keras Regression - Exploratory Data Analysis.mp4 137MB
- 07 Artificial Neural Network and TensorFlow Basics/023 Keras Project Solutions - Categorical Data.mp4 125MB
- 04 Matplotlib and Visualization Overview/011 Matplotlib Exercise Questions - Solutions.mp4 123MB
- 10 Open AI Gym Overview/006 OpenAI Gym - Agent Interacting with the Environment.mp4 116MB
- 06 Pandas and Scikit-Learn Crash Course/004 Pandas - DataFrames - Part One.mp4 114MB
- 07 Artificial Neural Network and TensorFlow Basics/017 Keras Classification - Overfitting and Evaluation.mp4 111MB
- 03 Numpy Basics Overview/002 NumPy Arrays.mp4 110MB
- 11 Classical Q Learning/017 Continuous Q-Learning - Part Six - Training and Usage.mp4 109MB
- 11 Classical Q Learning/010 Q-Learning Implementation - Part Four - Agent Training.mp4 107MB
- 12 Deep Q-Learning/011 DQN Manual Implementation - Part Four - Model Training.mp4 107MB
- 08 Convolutional Neural Networks with TensorFlow/007 CNN on MNIST - Creating and Training the Model.mp4 99MB
- 02 Course Set-Up and Installation Procedures/001 Anaconda and Jupyter Notebook Install and Setup.mp4 99MB
- 07 Artificial Neural Network and TensorFlow Basics/021 Keras Project Solutions - Missing Data - Part One.mp4 97MB
- 06 Pandas and Scikit-Learn Crash Course/007 Pandas - DataFrames - Part Four.mp4 97MB
- 04 Matplotlib and Visualization Overview/006 Matplotlib - Subplots Functionality.mp4 96MB
- 12 Deep Q-Learning/006 DQN Theory and Intuition - Part Four - Experience Replay.mp4 96MB
- 11 Classical Q Learning/009 Q-Learning Implementation - Part Three - Update Functions.mp4 93MB
- 08 Convolutional Neural Networks with TensorFlow/014 CNN on Real Image Files - Creating the Model.mp4 90MB
- 06 Pandas and Scikit-Learn Crash Course/006 Pandas - DataFrames - Part Three.mp4 90MB
- 12 Deep Q-Learning/005 DQN Theory and Intuition - Part Three - Feedback and Function Approximation.mp4 88MB
- 11 Classical Q Learning/007 Q-Learning Implementation - Part One - Environment Setup.mp4 88MB
- 08 Convolutional Neural Networks with TensorFlow/013 CNN on Real Image Files - Data Generation.mp4 88MB
- 11 Classical Q Learning/015 Continuous Q-Learning - Part Four - Discretization Implementation.mp4 86MB
- 11 Classical Q Learning/013 Continuous Q-Learning Theory - Part Two- Q-Table Shape.mp4 86MB
- 07 Artificial Neural Network and TensorFlow Basics/022 Keras Project Solutions - Dealing with Missing Data - Part Two.mp4 85MB
- 12 Deep Q-Learning/010 DQN Manual Implementation - Part Three - Hyperparameters and Functions.mp4 85MB
- 07 Artificial Neural Network and TensorFlow Basics/010 Keras Syntax - Creating and Training the Model.mp4 84MB
- 12 Deep Q-Learning/015 DQN - Keras-RL2 - Part Four - DQN Agent.mp4 84MB
- 12 Deep Q-Learning/007 DQN Theory and Intuition - Part Five - Mapping Key Ideas to Code.mp4 81MB
- 04 Matplotlib and Visualization Overview/008 Matplotlib Styling - Colors and Styles.mp4 81MB
- 07 Artificial Neural Network and TensorFlow Basics/019 Keras Project Notebook Exercise Overview.mp4 81MB
- 08 Convolutional Neural Networks with TensorFlow/012 CNN on Real Image Files - Reading in the Data.mp4 80MB
- 11 Classical Q Learning/003 Q-Learning Theory - Part One - Table Intuition.mp4 78MB
- 06 Pandas and Scikit-Learn Crash Course/009 Scikit-Learn - Using Metrics.mp4 77MB
- 07 Artificial Neural Network and TensorFlow Basics/013 Keras Regression - EDA Continued.mp4 76MB
- 07 Artificial Neural Network and TensorFlow Basics/006 Cost Functions and Gradient Descent.mp4 76MB
- 08 Convolutional Neural Networks with TensorFlow/002 Image Filters and Kernels.mp4 72MB
- 05 Machine Learning, Deep Learning, and Reinforcement Learning/002 Supervised Machine Learning Process.mp4 72MB
- 02 Course Set-Up and Installation Procedures/003 Environment Setup Walkthrough.mp4 71MB
- 10 Open AI Gym Overview/002 OpenAI Overview and History.mp4 70MB
- 07 Artificial Neural Network and TensorFlow Basics/015 Keras Regression - Model Evaluation and Predictions.mp4 69MB
- 11 Classical Q Learning/018 Q-Learning Exercise Project.mp4 66MB
- 07 Artificial Neural Network and TensorFlow Basics/011 Keras Syntax - Model Evaluation.mp4 65MB
- 08 Convolutional Neural Networks with TensorFlow/009 CNN on CIFAR-10 - The Data.mp4 64MB
- 07 Artificial Neural Network and TensorFlow Basics/026 Keras Project Solutions - Model Evaluation.mp4 63MB
- 12 Deep Q-Learning/017 DQN - Exercise Solutions.mp4 63MB
- 07 Artificial Neural Network and TensorFlow Basics/004 Activation Functions.mp4 63MB
- 09 Reinforcement Learning - Core Concepts/002 Agents, Environments, and Policy.mp4 62MB
- 06 Pandas and Scikit-Learn Crash Course/008 Scikit-Learn - Using Train-Test-Split.mp4 60MB
- 08 Convolutional Neural Networks with TensorFlow/006 CNN on MNIST - The Data.mp4 60MB
- 04 Matplotlib and Visualization Overview/004 Matplotlib - Implementing Figures and Axes.mp4 59MB
- 11 Classical Q Learning/006 Q-Learning Theory - Part Four - Programmatic Q Updates.mp4 58MB
- 08 Convolutional Neural Networks with TensorFlow/003 Convolutional Layers.mp4 58MB
- 07 Artificial Neural Network and TensorFlow Basics/007 Backpropagation.mp4 58MB
- 09 Reinforcement Learning - Core Concepts/003 Rewards, Discount Factors, and Bellman Equation.mp4 57MB
- 11 Classical Q Learning/011 Q-Learning Implementation - Part Five - Visualization and Utilization.mp4 57MB
- 07 Artificial Neural Network and TensorFlow Basics/016 Keras Classification - EDA and Preprocessing.mp4 56MB
- 08 Convolutional Neural Networks with TensorFlow/017 CNN Exercise Project Solutions.mp4 56MB
- 01 Course Overview/002 COURSE_NOTEBOOKS.zip 55MB
- 02 Course Set-Up and Installation Procedures/004 COURSE_NOTEBOOKS.zip 55MB
- 05 Machine Learning, Deep Learning, and Reinforcement Learning/001 What is Machine Learning, Deep Learning, and Artificial Intelligence_.mp4 55MB
- 11 Classical Q Learning/012 Continuous Q-Learning Theory - Part One - Environment Setup.mp4 54MB
- 11 Classical Q Learning/004 Q-Learning Theory - Part Two - Q Target Equation.mp4 54MB
- 06 Pandas and Scikit-Learn Crash Course/005 Pandas - DataFrames - Part Two.mp4 54MB
- 12 Deep Q-Learning/012 DQN - Keras-RL2 - Part One - Overview.mp4 54MB
- 04 Matplotlib and Visualization Overview/002 Matplotlib Basics.mp4 54MB
- 04 Matplotlib and Visualization Overview/010 Matplotlib Exercise Questions Overview.mp4 51MB
- 07 Artificial Neural Network and TensorFlow Basics/009 Keras Syntax - Preparing the Data.mp4 50MB
- 03 Numpy Basics Overview/004 Numpy Operations - Part Two.mp4 49MB
- 03 Numpy Basics Overview/006 Numpy Exercise Solutions.mp4 49MB
- 07 Artificial Neural Network and TensorFlow Basics/002 Perceptron Model.mp4 48MB
- 07 Artificial Neural Network and TensorFlow Basics/014 Keras Regression - Data Preprocessing and Model Creation.mp4 47MB
- 08 Convolutional Neural Networks with TensorFlow/015 CNN on Real Image Files - Model Evaluation.mp4 47MB
- 12 Deep Q-Learning/004 DQN Theory and Intuition - Part Two - Neural Networks for RL.mp4 47MB
- 03 Numpy Basics Overview/003 Numpy Operations - Part One.mp4 46MB
- 07 Artificial Neural Network and TensorFlow Basics/005 Multi-Class Classification Considerations.mp4 46MB
- 06 Pandas and Scikit-Learn Crash Course/003 Pandas - Series Part Two.mp4 45MB
- 11 Classical Q Learning/016 Continuous Q-Learning - Part Five - Functions and Hyperparameters.mp4 45MB
- 08 Convolutional Neural Networks with TensorFlow/010 CNN on CIFAR-10 - Evaluating the Model.mp4 45MB
- 01 Course Overview/002 Course Curriculum Overview.mp4 44MB
- 11 Classical Q Learning/008 Q-Learning Implementation - Part Two - Table and Hyperparameters.mp4 43MB
- 01 Course Overview/003 Course Success and Overview.mp4 42MB
- 04 Matplotlib and Visualization Overview/009 Advanced Matplotlib Commands (Optional).mp4 40MB
- 06 Pandas and Scikit-Learn Crash Course/002 Pandas - Series Part One.mp4 39MB
- 08 Convolutional Neural Networks with TensorFlow/008 CNN on MNIST - Model Evaluation.mp4 38MB
- 11 Classical Q Learning/005 Q-Learning Theory - Part Three - Q-Update Equation.mp4 38MB
- 10 Open AI Gym Overview/004 OpenAI Gym - Environment Key Ideas.mp4 37MB
- 07 Artificial Neural Network and TensorFlow Basics/003 Neural Networks.mp4 36MB
- 04 Matplotlib and Visualization Overview/007 Matplotlib Styling - Legends.mp4 34MB
- 12 Deep Q-Learning/009 DQN Manual Implementation - Part Two - Artificial Neural Network.mp4 32MB
- 07 Artificial Neural Network and TensorFlow Basics/025 Keras Project Solutions- Creating and Training the Model.mp4 30MB
- 12 Deep Q-Learning/002 History of DQN.mp4 29MB
- 12 Deep Q-Learning/016 DQN - Exercise Overview.mp4 28MB
- 08 Convolutional Neural Networks with TensorFlow/011 Downloading Data Set for Real Image Lectures.mp4 28MB
- 08 Convolutional Neural Networks with TensorFlow/004 Pooling Layers.mp4 28MB
- 09 Reinforcement Learning - Core Concepts/004 Deterministic vs. Stochastic Processes.mp4 27MB
- 11 Classical Q Learning/002 History of Q-Learning.mp4 27MB
- 12 Deep Q-Learning/014 DQN - Keras-RL2 - Part Three - Creating the ANN.mp4 26MB
- 04 Matplotlib and Visualization Overview/003 Matplotlib - Understanding the Figure Object.mp4 26MB
- 08 Convolutional Neural Networks with TensorFlow/005 MNIST Data Set Overview.mp4 25MB
- 11 Classical Q Learning/014 Continuous Q-Learning Theory - Part Three - Discretization Theory.mp4 25MB
- 07 Artificial Neural Network and TensorFlow Basics/024 Keras Project Solutions - Data Preprocessing.mp4 24MB
- 12 Deep Q-Learning/003 DQN Theory and Intuition - Part One - Review of Core RL Ideas.mp4 24MB
- 04 Matplotlib and Visualization Overview/005 Matplotlib - Figure Parameters.mp4 24MB
- 11 Classical Q Learning/001 Introduction to Classical Q-Learning Overview.mp4 23MB
- 04 Matplotlib and Visualization Overview/001 Introduction to Matplotlib.mp4 22MB
- 12 Deep Q-Learning/008 DQN Manual Implementation - Part One - Imports and Environment.mp4 21MB
- 08 Convolutional Neural Networks with TensorFlow/016 CNN Exercise Project Overview.mp4 18MB
- 12 Deep Q-Learning/013 DQN - Keras-RL2 - Part Two - Imports and Environment.mp4 14MB
- 03 Numpy Basics Overview/005 Numpy Exercise Overview.mp4 12MB
- 03 Numpy Basics Overview/001 Introduction to Numpy Section.mp4 11MB
- 09 Reinforcement Learning - Core Concepts/001 Overview of Core Concepts for Reinforcement Learning Section.mp4 11MB
- 07 Artificial Neural Network and TensorFlow Basics/008 TensorFlow vs. Keras Explained.mp4 10MB
- 12 Deep Q-Learning/001 DQN Section Overview.mp4 10MB
- 07 Artificial Neural Network and TensorFlow Basics/001 Introduction to Artificial Neural Networks.mp4 10MB
- 07 Artificial Neural Network and TensorFlow Basics/018 Keras Classification - Overview of Project Options.mp4 8MB
- 08 Convolutional Neural Networks with TensorFlow/001 Convolutional Neural Networks Section Overview.mp4 8MB
- 10 Open AI Gym Overview/001 Introduction to OpenAI Gym Section.mp4 6MB
- 12 Deep Q-Learning/110 DQNNaturePaper.pdf 4MB
- 10 Open AI Gym Overview/005 OpenAI Gym - Working with the Environment.en.srt 43KB
- 11 Classical Q Learning/019 Q-Learning Exercise Project - Solutions.en.srt 34KB
- 03 Numpy Basics Overview/002 NumPy Arrays.en.srt 33KB
- 10 Open AI Gym Overview/006 OpenAI Gym - Agent Interacting with the Environment.en.srt 32KB
- 11 Classical Q Learning/017 Continuous Q-Learning - Part Six - Training and Usage.en.srt 32KB
- 12 Deep Q-Learning/005 DQN Theory and Intuition - Part Three - Feedback and Function Approximation.en.srt 31KB
- 07 Artificial Neural Network and TensorFlow Basics/027 Tensorboard.en.srt 31KB
- 06 Pandas and Scikit-Learn Crash Course/004 Pandas - DataFrames - Part One.en.srt 30KB
- 07 Artificial Neural Network and TensorFlow Basics/020 Keras Project Solution - Exploratoy Data Analysis.en.srt 30KB
- 12 Deep Q-Learning/006 DQN Theory and Intuition - Part Four - Experience Replay.en.srt 30KB
- 04 Matplotlib and Visualization Overview/006 Matplotlib - Subplots Functionality.en.srt 30KB
- 07 Artificial Neural Network and TensorFlow Basics/006 Cost Functions and Gradient Descent.en.srt 29KB
- 07 Artificial Neural Network and TensorFlow Basics/012 Keras Regression - Exploratory Data Analysis.en.srt 28KB
- 12 Deep Q-Learning/010 DQN Manual Implementation - Part Three - Hyperparameters and Functions.en.srt 28KB
- 07 Artificial Neural Network and TensorFlow Basics/023 Keras Project Solutions - Categorical Data.en.srt 27KB
- 11 Classical Q Learning/015 Continuous Q-Learning - Part Four - Discretization Implementation.en.srt 27KB
- 11 Classical Q Learning/010 Q-Learning Implementation - Part Four - Agent Training.en.srt 27KB
- 08 Convolutional Neural Networks with TensorFlow/007 CNN on MNIST - Creating and Training the Model.en.srt 26KB
- 12 Deep Q-Learning/011 DQN Manual Implementation - Part Four - Model Training.en.srt 26KB
- 04 Matplotlib and Visualization Overview/011 Matplotlib Exercise Questions - Solutions.en.srt 26KB
- 11 Classical Q Learning/009 Q-Learning Implementation - Part Three - Update Functions.en.srt 26KB
- 11 Classical Q Learning/013 Continuous Q-Learning Theory - Part Two- Q-Table Shape.en.srt 26KB
- 07 Artificial Neural Network and TensorFlow Basics/017 Keras Classification - Overfitting and Evaluation.en.srt 25KB
- 08 Convolutional Neural Networks with TensorFlow/013 CNN on Real Image Files - Data Generation.en.srt 24KB
- 11 Classical Q Learning/007 Q-Learning Implementation - Part One - Environment Setup.en.srt 24KB
- 12 Deep Q-Learning/007 DQN Theory and Intuition - Part Five - Mapping Key Ideas to Code.en.srt 24KB
- 11 Classical Q Learning/003 Q-Learning Theory - Part One - Table Intuition.en.srt 23KB
- 10 Open AI Gym Overview/003 OpenAI Gym - Documentation Tour.en.srt 23KB
- 12 Deep Q-Learning/015 DQN - Keras-RL2 - Part Four - DQN Agent.en.srt 23KB
- 06 Pandas and Scikit-Learn Crash Course/009 Scikit-Learn - Using Metrics.en.srt 22KB
- 02 Course Set-Up and Installation Procedures/001 Anaconda and Jupyter Notebook Install and Setup.en.srt 22KB
- 08 Convolutional Neural Networks with TensorFlow/003 Convolutional Layers.en.srt 22KB
- 06 Pandas and Scikit-Learn Crash Course/007 Pandas - DataFrames - Part Four.en.srt 22KB
- 04 Matplotlib and Visualization Overview/008 Matplotlib Styling - Colors and Styles.en.srt 22KB
- 07 Artificial Neural Network and TensorFlow Basics/007 Backpropagation.en.srt 22KB
- 07 Artificial Neural Network and TensorFlow Basics/021 Keras Project Solutions - Missing Data - Part One.en.srt 22KB
- 04 Matplotlib and Visualization Overview/004 Matplotlib - Implementing Figures and Axes.en.srt 22KB
- 08 Convolutional Neural Networks with TensorFlow/012 CNN on Real Image Files - Reading in the Data.en.srt 22KB
- 07 Artificial Neural Network and TensorFlow Basics/010 Keras Syntax - Creating and Training the Model.en.srt 21KB
- 06 Pandas and Scikit-Learn Crash Course/006 Pandas - DataFrames - Part Three.en.srt 21KB
- 08 Convolutional Neural Networks with TensorFlow/014 CNN on Real Image Files - Creating the Model.en.srt 21KB
- 11 Classical Q Learning/012 Continuous Q-Learning Theory - Part One - Environment Setup.en.srt 21KB
- 05 Machine Learning, Deep Learning, and Reinforcement Learning/002 Supervised Machine Learning Process.en.srt 20KB
- 04 Matplotlib and Visualization Overview/002 Matplotlib Basics.en.srt 20KB
- 09 Reinforcement Learning - Core Concepts/003 Rewards, Discount Factors, and Bellman Equation.en.srt 20KB
- 07 Artificial Neural Network and TensorFlow Basics/013 Keras Regression - EDA Continued.en.srt 20KB
- 08 Convolutional Neural Networks with TensorFlow/006 CNN on MNIST - The Data.en.srt 19KB
- 09 Reinforcement Learning - Core Concepts/002 Agents, Environments, and Policy.en.srt 19KB
- 07 Artificial Neural Network and TensorFlow Basics/022 Keras Project Solutions - Dealing with Missing Data - Part Two.en.srt 19KB
- 08 Convolutional Neural Networks with TensorFlow/002 Image Filters and Kernels.en.srt 19KB
- 07 Artificial Neural Network and TensorFlow Basics/011 Keras Syntax - Model Evaluation.en.srt 19KB
- 08 Convolutional Neural Networks with TensorFlow/009 CNN on CIFAR-10 - The Data.en.srt 18KB
- 06 Pandas and Scikit-Learn Crash Course/008 Scikit-Learn - Using Train-Test-Split.en.srt 18KB
- 10 Open AI Gym Overview/002 OpenAI Overview and History.en.srt 18KB
- 07 Artificial Neural Network and TensorFlow Basics/004 Activation Functions.en.srt 17KB
- 02 Course Set-Up and Installation Procedures/003 Environment Setup Walkthrough.en.srt 17KB
- 11 Classical Q Learning/008 Q-Learning Implementation - Part Two - Table and Hyperparameters.en.srt 17KB
- 12 Deep Q-Learning/004 DQN Theory and Intuition - Part Two - Neural Networks for RL.en.srt 17KB
- 05 Machine Learning, Deep Learning, and Reinforcement Learning/001 What is Machine Learning, Deep Learning, and Artificial Intelligence_.en.srt 17KB
- 07 Artificial Neural Network and TensorFlow Basics/015 Keras Regression - Model Evaluation and Predictions.en.srt 17KB
- 03 Numpy Basics Overview/003 Numpy Operations - Part One.en.srt 17KB
- 07 Artificial Neural Network and TensorFlow Basics/005 Multi-Class Classification Considerations.en.srt 17KB
- 11 Classical Q Learning/004 Q-Learning Theory - Part Two - Q Target Equation.en.srt 17KB
- 11 Classical Q Learning/016 Continuous Q-Learning - Part Five - Functions and Hyperparameters.en.srt 16KB
- 07 Artificial Neural Network and TensorFlow Basics/009 Keras Syntax - Preparing the Data.en.srt 16KB
- 11 Classical Q Learning/011 Q-Learning Implementation - Part Five - Visualization and Utilization.en.srt 16KB
- 07 Artificial Neural Network and TensorFlow Basics/002 Perceptron Model.en.srt 16KB
- 06 Pandas and Scikit-Learn Crash Course/003 Pandas - Series Part Two.en.srt 16KB
- 01 Course Overview/002 Course Curriculum Overview.en.srt 16KB
- 12 Deep Q-Learning/017 DQN - Exercise Solutions.en.srt 15KB
- 11 Classical Q Learning/006 Q-Learning Theory - Part Four - Programmatic Q Updates.en.srt 15KB
- 07 Artificial Neural Network and TensorFlow Basics/026 Keras Project Solutions - Model Evaluation.en.srt 15KB
- 06 Pandas and Scikit-Learn Crash Course/002 Pandas - Series Part One.en.srt 14KB
- 06 Pandas and Scikit-Learn Crash Course/005 Pandas - DataFrames - Part Two.en.srt 14KB
- 10 Open AI Gym Overview/004 OpenAI Gym - Environment Key Ideas.en.srt 14KB
- 07 Artificial Neural Network and TensorFlow Basics/019 Keras Project Notebook Exercise Overview.en.srt 13KB
- 08 Convolutional Neural Networks with TensorFlow/015 CNN on Real Image Files - Model Evaluation.en.srt 13KB
- 08 Convolutional Neural Networks with TensorFlow/017 CNN Exercise Project Solutions.en.srt 13KB
- 07 Artificial Neural Network and TensorFlow Basics/014 Keras Regression - Data Preprocessing and Model Creation.en.srt 13KB
- 03 Numpy Basics Overview/004 Numpy Operations - Part Two.en.srt 13KB
- 11 Classical Q Learning/018 Q-Learning Exercise Project.en.srt 12KB
- 07 Artificial Neural Network and TensorFlow Basics/016 Keras Classification - EDA and Preprocessing.en.srt 12KB
- 01 Course Overview/003 Course Success and Overview.en.srt 12KB
- 04 Matplotlib and Visualization Overview/003 Matplotlib - Understanding the Figure Object.en.srt 12KB
- 12 Deep Q-Learning/012 DQN - Keras-RL2 - Part One - Overview.en.srt 12KB
- 11 Classical Q Learning/005 Q-Learning Theory - Part Three - Q-Update Equation.en.srt 12KB
- 07 Artificial Neural Network and TensorFlow Basics/003 Neural Networks.en.srt 12KB
- 12 Deep Q-Learning/009 DQN Manual Implementation - Part Two - Artificial Neural Network.en.srt 12KB
- 08 Convolutional Neural Networks with TensorFlow/010 CNN on CIFAR-10 - Evaluating the Model.en.srt 11KB
- 03 Numpy Basics Overview/006 Numpy Exercise Solutions.en.srt 11KB
- 08 Convolutional Neural Networks with TensorFlow/004 Pooling Layers.en.srt 11KB
- 04 Matplotlib and Visualization Overview/007 Matplotlib Styling - Legends.en.srt 11KB
- 08 Convolutional Neural Networks with TensorFlow/008 CNN on MNIST - Model Evaluation.en.srt 10KB
- 04 Matplotlib and Visualization Overview/010 Matplotlib Exercise Questions Overview.en.srt 10KB
- 08 Convolutional Neural Networks with TensorFlow/011 Downloading Data Set for Real Image Lectures.en.srt 9KB
- 12 Deep Q-Learning/014 DQN - Keras-RL2 - Part Three - Creating the ANN.en.srt 9KB
- 09 Reinforcement Learning - Core Concepts/004 Deterministic vs. Stochastic Processes.en.srt 8KB
- 04 Matplotlib and Visualization Overview/005 Matplotlib - Figure Parameters.en.srt 8KB
- 12 Deep Q-Learning/008 DQN Manual Implementation - Part One - Imports and Environment.en.srt 8KB
- 11 Classical Q Learning/014 Continuous Q-Learning Theory - Part Three - Discretization Theory.en.srt 8KB
- 08 Convolutional Neural Networks with TensorFlow/005 MNIST Data Set Overview.en.srt 8KB
- 12 Deep Q-Learning/003 DQN Theory and Intuition - Part One - Review of Core RL Ideas.en.srt 7KB
- 04 Matplotlib and Visualization Overview/001 Introduction to Matplotlib.en.srt 7KB
- 12 Deep Q-Learning/002 History of DQN.en.srt 7KB
- 04 Matplotlib and Visualization Overview/009 Advanced Matplotlib Commands (Optional).en.srt 7KB
- 11 Classical Q Learning/001 Introduction to Classical Q-Learning Overview.en.srt 6KB
- 07 Artificial Neural Network and TensorFlow Basics/025 Keras Project Solutions- Creating and Training the Model.en.srt 6KB
- 12 Deep Q-Learning/016 DQN - Exercise Overview.en.srt 6KB
- 11 Classical Q Learning/002 History of Q-Learning.en.srt 6KB
- 07 Artificial Neural Network and TensorFlow Basics/024 Keras Project Solutions - Data Preprocessing.en.srt 5KB
- 12 Deep Q-Learning/013 DQN - Keras-RL2 - Part Two - Imports and Environment.en.srt 5KB
- 06 Pandas and Scikit-Learn Crash Course/033 Advertising.csv 4KB
- 08 Convolutional Neural Networks with TensorFlow/016 CNN Exercise Project Overview.en.srt 4KB
- 07 Artificial Neural Network and TensorFlow Basics/001 Introduction to Artificial Neural Networks.en.srt 3KB
- 07 Artificial Neural Network and TensorFlow Basics/008 TensorFlow vs. Keras Explained.en.srt 3KB
- 03 Numpy Basics Overview/001 Introduction to Numpy Section.en.srt 3KB
- 12 Deep Q-Learning/001 DQN Section Overview.en.srt 3KB
- 09 Reinforcement Learning - Core Concepts/001 Overview of Core Concepts for Reinforcement Learning Section.en.srt 3KB
- 01 Course Overview/001 Welcome Message.html 3KB
- 08 Convolutional Neural Networks with TensorFlow/001 Convolutional Neural Networks Section Overview.en.srt 3KB
- 07 Artificial Neural Network and TensorFlow Basics/018 Keras Classification - Overview of Project Options.en.srt 3KB
- 03 Numpy Basics Overview/005 Numpy Exercise Overview.en.srt 2KB
- 10 Open AI Gym Overview/001 Introduction to OpenAI Gym Section.en.srt 2KB
- 02 Course Set-Up and Installation Procedures/002 Note on Environment Setup.html 2KB
- 06 Pandas and Scikit-Learn Crash Course/001 Pandas and Scikit-Learn Overview.html 1KB
- 09 Reinforcement Learning - Core Concepts/005 Tabular Reinforcement Learning.html 1KB
- 08 Convolutional Neural Networks with TensorFlow/external-assets-links.txt 180B