[] [UDEMY] Complete Data Wrangling & Data Visualisation With Python [FTU] 收录时间:2020-01-04 15:53:35 文件大小:3GB 下载次数:50 最近下载:2020-12-20 12:00:59 磁力链接: magnet:?xt=urn:btih:34d0d57c99cfce36d09c211173af421f5fc833ff 立即下载 复制链接 文件列表 8. Most Common Data Visualizations/4. Barplot.mp4 171MB 2. Read in Data From Different Sources With Pandas/4. Read in HTML Data.mp4 130MB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/2.1 Data and Code.zip.zip 123MB 8. Most Common Data Visualizations/6. Line Charts.mp4 117MB 8. Most Common Data Visualizations/3. Scatter plot-Relationship Between Two Numerical Variables.mp4 107MB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/3. Python Data Science Environment.mp4 105MB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/5. Introduction to IPythonJupyter.mp4 103MB 5. More Data Wrangling/2. Data Subsetting and Indexing.mp4 102MB 8. Most Common Data Visualizations/1. Histograms-Visualize the Distribution of Continuous Numerical Variables.mp4 99MB 5. More Data Wrangling/1. Data Grouping.mp4 98MB 5. More Data Wrangling/8. Merging and Joining.mp4 97MB 3. Data Cleaning/5. Theory Behind k-NN Algorithm.mp4 96MB 2. Read in Data From Different Sources With Pandas/1. What are Pandas.mp4 85MB 5. More Data Wrangling/6. Ranking & Sorting.mp4 82MB 8. Most Common Data Visualizations/9. And Some More.mp4 79MB 8. Most Common Data Visualizations/8. Some More Plot Types.mp4 76MB 5. More Data Wrangling/7. Concatenate.mp4 70MB 5. More Data Wrangling/3. More Data Subsetting.mp4 69MB 7. Theory Behind Data Visualisation/1. What is Data Visualisation.mp4 68MB 7. Theory Behind Data Visualisation/2. Some Theoretical Principles Behind Data Visualisation.mp4 66MB 4. Basic Data Wrangling/2. Preliminary Data Explorations.mp4 65MB 6. Feature Selection and Transformation/1. Correlation Analysis.mp4 56MB 3. Data Cleaning/3. Data Imputation.mp4 56MB 3. Data Cleaning/1. Remove NA Values.mp4 56MB 9. Miscallaneous Information/1. Using Colabs as an Online Jupyter Notebook.mp4 55MB 2. Read in Data From Different Sources With Pandas/2. Read CSV Data.mp4 54MB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/4. For Mac Users.mp4 50MB 4. Basic Data Wrangling/3. Basic Data Handling With Conditional Statements.mp4 49MB 4. Basic Data Wrangling/4. Drop ColumnRow.mp4 48MB 3. Data Cleaning/6. Use k-NN for Data Imputation.mp4 44MB 2. Read in Data From Different Sources With Pandas/3. Read Excel Data.mp4 42MB 8. Most Common Data Visualizations/2. Boxplots-Visualize the Distribution of Continuous Numerical Variables.mp4 41MB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/6. ipython in Browser.mp4 40MB 6. Feature Selection and Transformation/8. Create a New Feature.mp4 40MB 6. Feature Selection and Transformation/3. Univariate Feature Selection.mp4 39MB 5. More Data Wrangling/4. Extract Information From Strings.mp4 38MB 8. Most Common Data Visualizations/5. Pie Chart.mp4 38MB 3. Data Cleaning/2. Missing Values in a Real Dataset.mp4 37MB 6. Feature Selection and Transformation/4. Recursive Feature Elimination (RFE).mp4 37MB 6. Feature Selection and Transformation/2. Using Correlation to Decide Which Features to Retain.mp4 34MB 6. Feature Selection and Transformation/7. Data Standardisation.mp4 32MB 6. Feature Selection and Transformation/6. Implement PCA.mp4 27MB 4. Basic Data Wrangling/1. Basic Principles.mp4 27MB 4. Basic Data Wrangling/8. Simple Date Related Computations.mp4 25MB 4. Basic Data Wrangling/5. Change Column Name.mp4 25MB 4. Basic Data Wrangling/7. Explore Date Related Data.mp4 25MB 6. Feature Selection and Transformation/5. Theory Behind PCA.mp4 24MB 4. Basic Data Wrangling/6. Change the Column Type.mp4 23MB 3. Data Cleaning/4. Imputing Qualitative Values.mp4 21MB 8. Most Common Data Visualizations/7. More Line Charts.mp4 19MB 5. More Data Wrangling/5. (Fuzzy) String Matching.mp4 19MB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/1. Welcome to the Course.mp4 12MB 8. Most Common Data Visualizations/4. Barplot.vtt 23KB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/5. Introduction to IPythonJupyter.vtt 17KB 8. Most Common Data Visualizations/3. Scatter plot-Relationship Between Two Numerical Variables.vtt 12KB 8. Most Common Data Visualizations/6. Line Charts.vtt 12KB 8. Most Common Data Visualizations/1. Histograms-Visualize the Distribution of Continuous Numerical Variables.vtt 12KB 2. Read in Data From Different Sources With Pandas/4. Read in HTML Data.vtt 11KB 5. More Data Wrangling/8. Merging and Joining.vtt 11KB 8. Most Common Data Visualizations/8. Some More Plot Types.vtt 11KB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/3. Python Data Science Environment.vtt 10KB 7. Theory Behind Data Visualisation/1. What is Data Visualisation.vtt 10KB 2. Read in Data From Different Sources With Pandas/1. What are Pandas.vtt 10KB 3. Data Cleaning/3. Data Imputation.vtt 9KB 6. Feature Selection and Transformation/1. Correlation Analysis.vtt 9KB 5. More Data Wrangling/1. Data Grouping.vtt 8KB 8. Most Common Data Visualizations/9. And Some More.vtt 8KB 5. More Data Wrangling/3. More Data Subsetting.vtt 8KB 5. More Data Wrangling/7. Concatenate.vtt 8KB 4. Basic Data Wrangling/2. Preliminary Data Explorations.vtt 8KB 5. More Data Wrangling/2. Data Subsetting and Indexing.vtt 8KB 5. More Data Wrangling/6. Ranking & Sorting.vtt 7KB 7. Theory Behind Data Visualisation/2. Some Theoretical Principles Behind Data Visualisation.vtt 7KB 3. Data Cleaning/5. Theory Behind k-NN Algorithm.vtt 7KB 9. Miscallaneous Information/1. Using Colabs as an Online Jupyter Notebook.vtt 7KB 3. Data Cleaning/1. Remove NA Values.vtt 6KB 3. Data Cleaning/2. Missing Values in a Real Dataset.vtt 6KB 3. Data Cleaning/6. Use k-NN for Data Imputation.vtt 6KB 8. Most Common Data Visualizations/5. Pie Chart.vtt 6KB 6. Feature Selection and Transformation/8. Create a New Feature.vtt 6KB 2. Read in Data From Different Sources With Pandas/2. Read CSV Data.vtt 6KB 8. Most Common Data Visualizations/2. Boxplots-Visualize the Distribution of Continuous Numerical Variables.vtt 5KB 6. Feature Selection and Transformation/2. Using Correlation to Decide Which Features to Retain.vtt 5KB 4. Basic Data Wrangling/1. Basic Principles.vtt 5KB 6. Feature Selection and Transformation/3. Univariate Feature Selection.vtt 5KB 4. Basic Data Wrangling/4. Drop ColumnRow.vtt 4KB 5. More Data Wrangling/4. Extract Information From Strings.vtt 4KB 6. Feature Selection and Transformation/7. Data Standardisation.vtt 4KB 4. Basic Data Wrangling/3. Basic Data Handling With Conditional Statements.vtt 4KB 6. Feature Selection and Transformation/6. Implement PCA.vtt 4KB 6. Feature Selection and Transformation/4. Recursive Feature Elimination (RFE).vtt 4KB 4. Basic Data Wrangling/6. Change the Column Type.vtt 4KB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/4. For Mac Users.vtt 4KB 4. Basic Data Wrangling/8. Simple Date Related Computations.vtt 4KB 4. Basic Data Wrangling/7. Explore Date Related Data.vtt 4KB 4. Basic Data Wrangling/5. Change Column Name.vtt 4KB 2. Read in Data From Different Sources With Pandas/3. Read Excel Data.vtt 4KB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/6. ipython in Browser.vtt 3KB 3. Data Cleaning/4. Imputing Qualitative Values.vtt 3KB 6. Feature Selection and Transformation/5. Theory Behind PCA.vtt 3KB 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/1. Welcome to the Course.vtt 3KB 5. More Data Wrangling/5. (Fuzzy) String Matching.vtt 3KB 8. Most Common Data Visualizations/7. More Line Charts.vtt 2KB 0. Websites you may like/1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url 328B 0. Websites you may like/5. (Discuss.FTUForum.com) FTU Discussion Forum.url 294B 0. Websites you may like/2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url 286B 0. Websites you may like/4. (FTUApps.com) Download Cracked Developers Applications For Free.url 239B 0. Websites you may like/How you can help Team-FTU.txt 237B 0. Websites you may like/3. (NulledPremium.com) Download Cracked Website Themes, Plugins, Scripts And Stock Images.url 163B 1. INTRODUCTION TO THE COURSE The Key Concepts and Software Tools/2. Data & Script For the Course.html 123B