[] Udemy - Python for Machine Learning The Complete Beginner's Course 收录时间:2023-08-23 12:41:59 文件大小:685MB 下载次数:1 最近下载:2023-08-23 12:41:59 磁力链接: magnet:?xt=urn:btih:3571aa8bff21e9c64a09fb3709e896e869f06bf2 立即下载 复制链接 文件列表 3. Multiple Linear Regression/3. Implementation in python Encoding Categorical Data.mp4 29MB 4. Classification Algorithms K-Nearest Neighbors/7. Implementation in python Splitting data into Train and Test Sets.mp4 20MB 8. Recommender System/6. Sorting by title and rating.mp4 19MB 7. Clustering/6. Implementation in python.mp4 19MB 3. Multiple Linear Regression/6. Implementation in python Predicting the Test Set results.mp4 18MB 5. Classification Algorithms Decision Tree/6. Implementation in python Encoding Categorical Data.mp4 17MB 1. Introduction to Machine Learning/6. Supervised learning vs Unsupervised learning.mp4 14MB 6. Classification Algorithms Logistic regression/7. Implementation in python Results prediction & Confusion matrix.mp4 13MB 3. Multiple Linear Regression/2. Implementation in python Exploring the dataset.mp4 13MB 8. Recommender System/13. Correlation between the most-rated movies.mp4 13MB 2. Simple Linear Regression/6. Implementation in python Creating a linear regression object.mp4 13MB 6. Classification Algorithms Logistic regression/5. Implementation in python Pre-processing.mp4 13MB 7. Clustering/14. 3D Visualization of the predicted values.mp4 13MB 7. Clustering/10. Importing the dataset.mp4 13MB 8. Recommender System/17. Repeating the process for another movie.mp4 13MB 4. Classification Algorithms K-Nearest Neighbors/9. Implementation in python Importing the KNN classifier.mp4 13MB 7. Clustering/11. Visualizing the dataset.mp4 12MB 3. Multiple Linear Regression/8. Root Mean Squared Error in Python.mp4 12MB 8. Recommender System/10. Data pre-processing.mp4 11MB 6. Classification Algorithms Logistic regression/8. Logistic Regression vs Linear Regression.mp4 11MB 5. Classification Algorithms Decision Tree/8. Implementation in python Results prediction & Accuracy.mp4 10MB 8. Recommender System/4. Implementation in python Importing libraries & datasets.mp4 10MB 4. Classification Algorithms K-Nearest Neighbors/10. Implementation in python Results prediction & Confusion matrix.mp4 10MB 7. Clustering/15. Number of predicted clusters.mp4 9MB 2. Simple Linear Regression/5. Implementation in python Distribution of the data.mp4 9MB 4. Classification Algorithms K-Nearest Neighbors/6. Implementation in python Importing the dataset.mp4 9MB 2. Simple Linear Regression/1. Introduction to regression.mp4 9MB 8. Recommender System/11. Sorting the most-rated movies.mp4 9MB 3. Multiple Linear Regression/4. Implementation in python Splitting data into Train and Test Sets.mp4 9MB 3. Multiple Linear Regression/5. Implementation in python Training the model on the Training set.mp4 9MB 6. Classification Algorithms Logistic regression/6. Implementation in python Training the model.mp4 8MB 7. Clustering/13. 3D Visualization of the clusters.mp4 8MB 7. Clustering/8. Density-based clustering.mp4 8MB 2. Simple Linear Regression/2. How Does Linear Regression Work.mp4 8MB 7. Clustering/12. Defining the classifier.mp4 8MB 2. Simple Linear Regression/4. Implementation in python Importing libraries & datasets.mp4 8MB 8. Recommender System/1. Introduction.mp4 8MB 1. Introduction to Machine Learning/1. What is Machine Learning.mp4 7MB 7. Clustering/7. Hierarchical clustering.mp4 7MB 8. Recommender System/9. Jointplot of the ratings and number of ratings.mp4 7MB 6. Classification Algorithms Logistic regression/4. Implementation in python Splitting data into Train and Test Sets.mp4 7MB 7. Clustering/4. Elbow method.mp4 7MB 8. Recommender System/16. Sorting values.mp4 7MB 6. Classification Algorithms Logistic regression/3. Implementation in python Importing libraries & datasets.mp4 7MB 7. Clustering/3. K-Means Clustering Algorithm.mp4 7MB 6. Classification Algorithms Logistic regression/1. Introduction.mp4 7MB 1. Introduction to Machine Learning/2. Applications of Machine Learning.mp4 7MB 5. Classification Algorithms Decision Tree/1. Introduction to decision trees.mp4 6MB 5. Classification Algorithms Decision Tree/4. Decision tree structure.mp4 6MB 3. Multiple Linear Regression/1. Understanding Multiple linear regression.mp4 6MB 1. Introduction to Machine Learning/4. What is Supervised learning.mp4 6MB 4. Classification Algorithms K-Nearest Neighbors/4. K-Nearest Neighbours (KNN) using python.mp4 6MB 8. Recommender System/14. Sorting the data by correlation.mp4 6MB 8. Recommender System/8. Frequency distribution.mp4 6MB 4. Classification Algorithms K-Nearest Neighbors/2. K-Nearest Neighbors algorithm.mp4 6MB 3. Multiple Linear Regression/7. Evaluating the performance of the regression model.mp4 6MB 5. Classification Algorithms Decision Tree/3. Exploring the dataset.mp4 6MB 1. Introduction to Machine Learning/5. What is Unsupervised learning.mp4 6MB 7. Clustering/5. Steps of the Elbow method.mp4 6MB 4. Classification Algorithms K-Nearest Neighbors/8. Implementation in python Feature Scaling.mp4 6MB 8. Recommender System/7. Histogram showing number of ratings.mp4 6MB 6. Classification Algorithms Logistic regression/2. Implementation steps.mp4 5MB 8. Recommender System/12. Grabbing the ratings for two movies.mp4 5MB 2. Simple Linear Regression/3. Line representation.mp4 5MB 5. Classification Algorithms Decision Tree/2. What is Entropy.mp4 5MB 4. Classification Algorithms K-Nearest Neighbors/5. Implementation in python Importing required libraries.mp4 5MB 5. Classification Algorithms Decision Tree/7. Implementation in python Splitting data into Train and Test Sets.mp4 5MB 8. Recommender System/3. Content-based Recommender System.mp4 5MB 8. Recommender System/15. Filtering out movies.mp4 5MB 4. Classification Algorithms K-Nearest Neighbors/1. Introduction to classification.mp4 5MB 5. Classification Algorithms Decision Tree/5. Implementation in python Importing libraries & datasets.mp4 5MB 7. Clustering/1. Introduction to clustering.mp4 4MB 8. Recommender System/5. Merging datasets into one dataframe.mp4 4MB 8. Recommender System/2. Collaborative Filtering in Recommender Systems.mp4 4MB 7. Clustering/2. Use cases.mp4 4MB 7. Clustering/9. Implementation of k-means clustering in python.mp4 4MB 1. Introduction to Machine Learning/3. Machine learning Methods.mp4 4MB 4. Classification Algorithms K-Nearest Neighbors/3. Example of KNN.mp4 3MB 9. Conclusion/1. Conclusion.mp4 3MB 1. Introduction to Machine Learning/7.14 u.data 2MB 1. Introduction to Machine Learning/7.12 Recommender Systems with Python.ipynb 122KB 1. Introduction to Machine Learning/7.4 K-means algorithm numpy&pandas clustering.ipynb 102KB 1. Introduction to Machine Learning/7.10 Movie_Id_Titles.original 50KB 1. Introduction to Machine Learning/7.5 KNN_Binary_Classification.ipynb 25KB 1. Introduction to Machine Learning/7.6 linear_regression_houseprice.ipynb 16KB 1. Introduction to Machine Learning/7.2 Decision_tree.ipynb 14KB 1. Introduction to Machine Learning/7.15 user data.csv 11KB 1. Introduction to Machine Learning/7.11 MultipleLinearRegression.ipynb 9KB 8. Recommender System/6. Sorting by title and rating.srt 6KB 3. Multiple Linear Regression/3. Implementation in python Encoding Categorical Data.srt 6KB 1. Introduction to Machine Learning/6. Supervised learning vs Unsupervised learning.srt 4KB 1. Introduction to Machine Learning/7.8 mall customers data.csv 4KB 1. Introduction to Machine Learning/7.9 mallCustomerData.txt 4KB 7. Clustering/6. Implementation in python.srt 4KB 3. Multiple Linear Regression/2. Implementation in python Exploring the dataset.srt 4KB 5. Classification Algorithms Decision Tree/6. Implementation in python Encoding Categorical Data.srt 3KB 7. Clustering/10. Importing the dataset.srt 3KB 8. Recommender System/4. Implementation in python Importing libraries & datasets.srt 3KB 7. Clustering/11. Visualizing the dataset.srt 3KB 6. Classification Algorithms Logistic regression/8. Logistic Regression vs Linear Regression.srt 3KB 4. Classification Algorithms K-Nearest Neighbors/7. Implementation in python Splitting data into Train and Test Sets.srt 3KB 3. Multiple Linear Regression/6. Implementation in python Predicting the Test Set results.srt 3KB 2. Simple Linear Regression/6. Implementation in python Creating a linear regression object.srt 3KB 7. Clustering/14. 3D Visualization of the predicted values.srt 3KB 1. Introduction to Machine Learning/7.7 logistic_regression_Binary_Classification.ipynb 3KB 5. Classification Algorithms Decision Tree/8. Implementation in python Results prediction & Accuracy.srt 3KB 8. Recommender System/17. Repeating the process for another movie.srt 3KB 6. Classification Algorithms Logistic regression/7. Implementation in python Results prediction & Confusion matrix.srt 3KB 1. Introduction to Machine Learning/7.1 50_Startups.csv 2KB 3. Multiple Linear Regression/8. Root Mean Squared Error in Python.srt 2KB 8. Recommender System/10. Data pre-processing.srt 2KB 2. Simple Linear Regression/5. Implementation in python Distribution of the data.srt 2KB 7. Clustering/15. Number of predicted clusters.srt 2KB 1. Introduction to Machine Learning/1. What is Machine Learning.srt 2KB 8. Recommender System/13. Correlation between the most-rated movies.srt 2KB 4. Classification Algorithms K-Nearest Neighbors/9. Implementation in python Importing the KNN classifier.srt 2KB 1. Introduction to Machine Learning/2. Applications of Machine Learning.srt 2KB 6. Classification Algorithms Logistic regression/5. Implementation in python Pre-processing.srt 2KB 2. Simple Linear Regression/1. Introduction to regression.srt 2KB 2. Simple Linear Regression/2. How Does Linear Regression Work.srt 2KB 6. Classification Algorithms Logistic regression/3. Implementation in python Importing libraries & datasets.srt 2KB 7. Clustering/4. Elbow method.srt 2KB 7. Clustering/8. Density-based clustering.srt 2KB 7. Clustering/12. Defining the classifier.srt 2KB 6. Classification Algorithms Logistic regression/4. Implementation in python Splitting data into Train and Test Sets.srt 2KB 7. Clustering/13. 3D Visualization of the clusters.srt 2KB 8. Recommender System/1. Introduction.srt 2KB 7. Clustering/3. K-Means Clustering Algorithm.srt 2KB 3. Multiple Linear Regression/4. Implementation in python Splitting data into Train and Test Sets.srt 2KB 5. Classification Algorithms Decision Tree/1. Introduction to decision trees.srt 1KB 8. Recommender System/12. Grabbing the ratings for two movies.srt 1KB 8. Recommender System/14. Sorting the data by correlation.srt 1KB 2. Simple Linear Regression/4. Implementation in python Importing libraries & datasets.srt 1KB 3. Multiple Linear Regression/1. Understanding Multiple linear regression.srt 1KB 5. Classification Algorithms Decision Tree/2. What is Entropy.srt 1KB 6. Classification Algorithms Logistic regression/1. Introduction.srt 1KB 4. Classification Algorithms K-Nearest Neighbors/10. Implementation in python Results prediction & Confusion matrix.srt 1KB 8. Recommender System/9. Jointplot of the ratings and number of ratings.srt 1KB 5. Classification Algorithms Decision Tree/3. Exploring the dataset.srt 1KB 5. Classification Algorithms Decision Tree/4. Decision tree structure.srt 1KB 3. Multiple Linear Regression/7. Evaluating the performance of the regression model.srt 1KB 1. Introduction to Machine Learning/4. What is Supervised learning.srt 1KB 4. Classification Algorithms K-Nearest Neighbors/6. Implementation in python Importing the dataset.srt 1KB 7. Clustering/7. Hierarchical clustering.srt 1KB 8. Recommender System/8. Frequency distribution.srt 1KB 4. Classification Algorithms K-Nearest Neighbors/4. K-Nearest Neighbours (KNN) using python.srt 1KB 6. Classification Algorithms Logistic regression/6. Implementation in python Training the model.srt 1KB 4. Classification Algorithms K-Nearest Neighbors/1. Introduction to classification.srt 1KB 8. Recommender System/16. Sorting values.srt 1KB 7. Clustering/5. Steps of the Elbow method.srt 1KB 1. Introduction to Machine Learning/5. What is Unsupervised learning.srt 1KB 7. Clustering/2. Use cases.srt 1KB 3. Multiple Linear Regression/5. Implementation in python Training the model on the Training set.srt 1020B 6. Classification Algorithms Logistic regression/2. Implementation steps.srt 954B 4. Classification Algorithms K-Nearest Neighbors/2. K-Nearest Neighbors algorithm.srt 921B 5. Classification Algorithms Decision Tree/7. Implementation in python Splitting data into Train and Test Sets.srt 879B 8. Recommender System/11. Sorting the most-rated movies.srt 879B 5. Classification Algorithms Decision Tree/5. Implementation in python Importing libraries & datasets.srt 869B 7. Clustering/9. Implementation of k-means clustering in python.srt 836B 7. Clustering/1. Introduction to clustering.srt 832B 2. Simple Linear Regression/3. Line representation.srt 828B 8. Recommender System/7. Histogram showing number of ratings.srt 779B 8. Recommender System/3. Content-based Recommender System.srt 765B 8. Recommender System/15. Filtering out movies.srt 726B 8. Recommender System/2. Collaborative Filtering in Recommender Systems.srt 674B 1. Introduction to Machine Learning/7.13 salaries.csv 657B 8. Recommender System/5. Merging datasets into one dataframe.srt 622B 1. Introduction to Machine Learning/3. Machine learning Methods.srt 437B 4. Classification Algorithms K-Nearest Neighbors/5. Implementation in python Importing required libraries.srt 434B 9. Conclusion/1. Conclusion.srt 414B 4. Classification Algorithms K-Nearest Neighbors/3. Example of KNN.srt 380B 4. Classification Algorithms K-Nearest Neighbors/8. Implementation in python Feature Scaling.srt 348B 8. Recommender System/18. Quiz Time.html 188B 1. Introduction to Machine Learning/7. Course Materials.html 148B 0. Websites you may like/[FreeCourseSite.com].url 127B 0. Websites you may like/[CourseClub.Me].url 122B 1. Introduction to Machine Learning/7.3 homeprices.csv 77B 0. Websites you may like/[GigaCourse.Com].url 49B