[] Udemy - Spark and Python for Big Data with PySpark 收录时间:2020-01-18 09:45:52 文件大小:2GB 下载次数:88 最近下载:2021-01-22 11:38:49 磁力链接: magnet:?xt=urn:btih:3c09c47130a3efe607ca331c6f13ccc1a63cb5c8 立即下载 复制链接 文件列表 4. AWS EC2 PySpark Set-up/2. Creating the EC2 Instance.mp4 63MB 17. Spark Streaming with Python/5. Spark Streaming Twitter Project - Part Three.mp4 55MB 12. Logistic Regression/2. Logistic Regression Example Code Along.mp4 53MB 10. Introduction to Machine Learning with MLlib/2. Machine Learning with Spark and Python with MLlib.mp4 51MB 4. AWS EC2 PySpark Set-up/4. Installations on EC2.mp4 50MB 13. Decision Trees and Random Forests/3. Decision Tress and Random Forest Code Along Examples.mp4 49MB 1. Introduction to Course/4. What is Spark Why Python.mp4 48MB 3. Local VirtualBox Set-up/2. Local Installation VirtualBox Part 2.mp4 46MB 6. AWS EMR Cluster Setup/1. AWS EMR Setup.mp4 45MB 9. Spark DataFrame Project Exercise/2. DataFrame Project Exercise Solutions.mp4 45MB 12. Logistic Regression/3. Logistic Regression Code Along.mp4 41MB 11. Linear Regression/2. Linear Regression Documentation Example.mp4 41MB 11. Linear Regression/4. Linear Regression Example Code Along.mp4 39MB 11. Linear Regression/6. Linear Regression Consulting Project Solutions.mp4 39MB 3. Local VirtualBox Set-up/1. Local Installation VirtualBox Part 1.mp4 38MB 16. Natural Language Processing/2. NLP Tools Part One.mp4 36MB 16. Natural Language Processing/4. Natural Language Processing Code Along Project.mp4 35MB 13. Decision Trees and Random Forests/2. Tree Methods Documentation Examples.mp4 34MB 12. Logistic Regression/5. Logistic Regression Consulting Project Solutions.mp4 34MB 17. Spark Streaming with Python/1. Introduction to Streaming with Spark!.mp4 33MB 7. Python Crash Course/3. Python Crash Course Part One.mp4 30MB 17. Spark Streaming with Python/4. Spark Streaming Twitter Project - Part Two.mp4 29MB 8. Spark DataFrame Basics/5. Groupby and Aggregate Operations.mp4 29MB 17. Spark Streaming with Python/2. Spark Streaming Documentation Example.mp4 29MB 14. K-means Clustering/3. Clustering Example Code Along.mp4 28MB 5. Databricks Setup/1. Databricks Setup.mp4 28MB 8. Spark DataFrame Basics/4. Spark DataFrame Basic Operations.mp4 28MB 7. Python Crash Course/7. Python Crash Course Exercise Solutions.mp4 25MB 15. Collaborative Filtering for Recommender Systems/2. Recommender System - Code Along Project.mp4 25MB 8. Spark DataFrame Basics/7. Dates and Timestamps.mp4 24MB 7. Python Crash Course/5. Python Crash Course Part Three.mp4 23MB 14. K-means Clustering/5. Clustering Consulting Project Solutions.mp4 23MB 7. Python Crash Course/4. Python Crash Course Part Two.mp4 22MB 8. Spark DataFrame Basics/2. Spark DataFrame Basics.mp4 21MB 14. K-means Clustering/2. KMeans Clustering Documentation Example.mp4 21MB 12. Logistic Regression/1. Logistic Regression Theory and Reading.mp4 21MB 8. Spark DataFrame Basics/3. Spark DataFrame Basics Part Two.mp4 20MB 10. Introduction to Machine Learning with MLlib/1. Introduction to Machine Learning and ISLR.mp4 19MB 16. Natural Language Processing/3. NLP Tools Part Two.mp4 19MB 8. Spark DataFrame Basics/6. Missing Data.mp4 17MB 13. Decision Trees and Random Forests/5. Random Forest Classification Consulting Project Solutions.mp4 16MB 3. Local VirtualBox Set-up/3. Setting up PySpark.mp4 16MB 13. Decision Trees and Random Forests/1. Tree Methods Theory and Reading.mp4 15MB 1. Introduction to Course/2. Course Overview.mp4 14MB 16. Natural Language Processing/1. Introduction to Natural Language Processing.mp4 14MB 7. Python Crash Course/2. Jupyter Notebook Overview.mp4 13MB 14. K-means Clustering/1. K-means Clustering Theory and Reading.mp4 13MB 15. Collaborative Filtering for Recommender Systems/1. Introduction to Recommender Systems.mp4 13MB 11. Linear Regression/3. Regression Evaluation.mp4 12MB 9. Spark DataFrame Project Exercise/1. DataFrame Project Exercise.mp4 12MB 17. Spark Streaming with Python/3. Spark Streaming Twitter Project - Part.mp4 12MB 1. Introduction to Course/1. Introduction.mp4 12MB 2. Setting up Python with Spark/1. Set-up Overview.mp4 11MB 11. Linear Regression/1. Linear Regression Theory and Reading.mp4 10MB 4. AWS EC2 PySpark Set-up/3. SSH with Mac or Linux.mp4 9MB 11. Linear Regression/5. Linear Regression Consulting Project.mp4 7MB 14. K-means Clustering/4. Clustering Consulting Project.mp4 7MB 12. Logistic Regression/4. Logistic Regression Consulting Project.mp4 6MB 13. Decision Trees and Random Forests/4. Random Forest - Classification Consulting Project.mp4 5MB 4. AWS EC2 PySpark Set-up/1. AWS EC2 Set-up Guide.mp4 5MB 7. Python Crash Course/6. Python Crash Course Exercises.mp4 5MB 8. Spark DataFrame Basics/1. Introduction to Spark DataFrames.mp4 5MB 7. Python Crash Course/1. Introduction to Python Crash Course.mp4 3MB 1. Introduction to Course/2.1 Python-and-Spark-for-Big-Data-master.zip.zip 2MB 1. Introduction to Course/3.1 Python-and-Spark-for-Big-Data-master.zip.zip 2MB 11. Linear Regression/4.1 Ecommerce_Customers.csv.csv 85KB 1. Introduction to Course/4. What is Spark Why Python.vtt 27KB 13. Decision Trees and Random Forests/3. Decision Tress and Random Forest Code Along Examples.vtt 27KB 17. Spark Streaming with Python/5. Spark Streaming Twitter Project - Part Three.vtt 26KB 12. Logistic Regression/3. Logistic Regression Code Along.vtt 24KB 6. AWS EMR Cluster Setup/1. AWS EMR Setup.vtt 23KB 4. AWS EC2 PySpark Set-up/2. Creating the EC2 Instance.vtt 21KB 7. Python Crash Course/3. Python Crash Course Part One.vtt 21KB 12. Logistic Regression/2. Logistic Regression Example Code Along.vtt 21KB 11. Linear Regression/4. Linear Regression Example Code Along.vtt 20KB 16. Natural Language Processing/2. NLP Tools Part One.vtt 20KB 11. Linear Regression/6. Linear Regression Consulting Project Solutions.vtt 20KB 9. Spark DataFrame Project Exercise/2. DataFrame Project Exercise Solutions.vtt 20KB 11. Linear Regression/2. Linear Regression Documentation Example.vtt 19KB 13. Decision Trees and Random Forests/2. Tree Methods Documentation Examples.vtt 18KB 4. AWS EC2 PySpark Set-up/4. Installations on EC2.vtt 18KB 16. Natural Language Processing/4. Natural Language Processing Code Along Project.vtt 17KB 5. Databricks Setup/1. Databricks Setup.vtt 17KB 8. Spark DataFrame Basics/5. Groupby and Aggregate Operations.vtt 17KB 3. Local VirtualBox Set-up/2. Local Installation VirtualBox Part 2.vtt 16KB 14. K-means Clustering/3. Clustering Example Code Along.vtt 16KB 3. Local VirtualBox Set-up/1. Local Installation VirtualBox Part 1.vtt 16KB 17. Spark Streaming with Python/4. Spark Streaming Twitter Project - Part Two.vtt 16KB 15. Collaborative Filtering for Recommender Systems/2. Recommender System - Code Along Project.vtt 16KB 12. Logistic Regression/1. Logistic Regression Theory and Reading.vtt 16KB 10. Introduction to Machine Learning with MLlib/1. Introduction to Machine Learning and ISLR.vtt 15KB 17. Spark Streaming with Python/1. Introduction to Streaming with Spark!.vtt 15KB 17. Spark Streaming with Python/2. Spark Streaming Documentation Example.vtt 15KB 7. Python Crash Course/4. Python Crash Course Part Two.vtt 15KB 8. Spark DataFrame Basics/2. Spark DataFrame Basics.vtt 14KB 7. Python Crash Course/5. Python Crash Course Part Three.vtt 14KB 8. Spark DataFrame Basics/4. Spark DataFrame Basic Operations.vtt 14KB 10. Introduction to Machine Learning with MLlib/2. Machine Learning with Spark and Python with MLlib.vtt 14KB 12. Logistic Regression/5. Logistic Regression Consulting Project Solutions.vtt 13KB 14. K-means Clustering/2. KMeans Clustering Documentation Example.vtt 13KB 1. Introduction to Course/2. Course Overview.vtt 13KB 8. Spark DataFrame Basics/7. Dates and Timestamps.vtt 13KB 8. Spark DataFrame Basics/3. Spark DataFrame Basics Part Two.vtt 13KB 8. Spark DataFrame Basics/6. Missing Data.vtt 12KB 16. Natural Language Processing/1. Introduction to Natural Language Processing.vtt 12KB 7. Python Crash Course/7. Python Crash Course Exercise Solutions.vtt 11KB 13. Decision Trees and Random Forests/1. Tree Methods Theory and Reading.vtt 10KB 13. Decision Trees and Random Forests/5. Random Forest Classification Consulting Project Solutions.vtt 10KB 14. K-means Clustering/5. Clustering Consulting Project Solutions.vtt 10KB 7. Python Crash Course/2. Jupyter Notebook Overview.vtt 10KB 11. Linear Regression/3. Regression Evaluation.vtt 10KB 16. Natural Language Processing/3. NLP Tools Part Two.vtt 9KB 14. K-means Clustering/1. K-means Clustering Theory and Reading.vtt 9KB 2. Setting up Python with Spark/1. Set-up Overview.vtt 9KB 15. Collaborative Filtering for Recommender Systems/1. Introduction to Recommender Systems.vtt 9KB 3. Local VirtualBox Set-up/3. Setting up PySpark.vtt 7KB 11. Linear Regression/1. Linear Regression Theory and Reading.vtt 7KB 4. AWS EC2 PySpark Set-up/3. SSH with Mac or Linux.vtt 7KB 17. Spark Streaming with Python/3. Spark Streaming Twitter Project - Part.vtt 6KB 18. Bonus/1. Bonus Lecture Coupons.html 6KB 9. Spark DataFrame Project Exercise/1. DataFrame Project Exercise.vtt 5KB 12. Logistic Regression/4. Logistic Regression Consulting Project.vtt 5KB 11. Linear Regression/5. Linear Regression Consulting Project.vtt 4KB 14. K-means Clustering/4. Clustering Consulting Project.vtt 4KB 1. Introduction to Course/1. Introduction.vtt 4KB 4. AWS EC2 PySpark Set-up/1. AWS EC2 Set-up Guide.vtt 4KB 13. Decision Trees and Random Forests/4. Random Forest - Classification Consulting Project.vtt 3KB 8. Spark DataFrame Basics/1. Introduction to Spark DataFrames.vtt 3KB 7. Python Crash Course/6. Python Crash Course Exercises.vtt 2KB 7. Python Crash Course/1. Introduction to Python Crash Course.vtt 2KB 1. Introduction to Course/3. Frequently Asked Questions.html 447B 2. Setting up Python with Spark/2. Note on Installation Sections.html 347B 1. Introduction to Course/2.2 Course Overview Slides.html 161B 1. Introduction to Course/4.1 Spark and Python Slides.html 161B 10. Introduction to Machine Learning with MLlib/1.1 Slides for ML Intro.html 161B 11. Linear Regression/1.1 Slides for Linear Regression.html 161B 12. Logistic Regression/1.1 Slides for Logistic Regression.html 161B 13. Decision Trees and Random Forests/1.1 Slides for Tree Methods.html 161B 14. K-means Clustering/1.1 Slides for Clustering.html 161B 15. Collaborative Filtering for Recommender Systems/1.1 Recommender Slides.html 161B 16. Natural Language Processing/1.1 NLP Slides.html 161B 17. Spark Streaming with Python/1.1 Spark Streaming Slides.html 161B 2. Setting up Python with Spark/1.1 Slides for Installation Options Overview.html 161B 2. Setting up Python with Spark/1.2 Slides for Installation.html 161B 7. Python Crash Course/1.1 Slides for Python Crash Course.html 161B 8. Spark DataFrame Basics/1.1 Slides for Spark DataFrame Basics.html 161B 12. Logistic Regression/3.1 Great Example from Databricks.html 150B 12. Logistic Regression/3.2 Explanation of AUC.html 148B [FreeCourseLab.com].url 126B