[] - Udemy - Applied Deep Learning Build a Chatbot - Theory, Application
- 收录时间:2020-05-17 06:23:25
- 文件大小:3GB
- 下载次数:49
- 最近下载:2021-01-11 07:31:05
- 磁力链接:
-
文件列表
- 6. Practical Part 4 - Building the Model/2. Defining the Encoder.mp4 242MB
- 6. Practical Part 4 - Building the Model/6. Designing the Decoder Part 2.mp4 160MB
- 6. Practical Part 4 - Building the Model/4. Designing the Attention Model.mp4 151MB
- 7. Practical Part 5 - Training the Model/3. Visualize Training Part 1.mp4 132MB
- 6. Practical Part 4 - Building the Model/5. Designing the Decoder Part 1.mp4 127MB
- 7. Practical Part 5 - Training the Model/5. Training.mp4 123MB
- 7. Practical Part 5 - Training the Model/4. Visualize Training Part 2.mp4 113MB
- 5. Practical Part 3 - Data Preperation/5. Preparing the Data for Model Part 4.mp4 104MB
- 4. Practical Part 2 - Processing the Dataset/8. Processing the Text Part 2.mp4 96MB
- 4. Practical Part 2 - Processing the Dataset/7. Processing the Text.mp4 96MB
- 4. Practical Part 2 - Processing the Dataset/6. Processing the Words.mp4 89MB
- 5. Practical Part 3 - Data Preperation/4. Preparing the Data for Model Part 3.mp4 89MB
- 5. Practical Part 3 - Data Preperation/1. Preparing the Data for Model Part 1.mp4 87MB
- 4. Practical Part 2 - Processing the Dataset/10. Getting Rid of Rare Words.mp4 83MB
- 4. Practical Part 2 - Processing the Dataset/1. The Dataset.mp4 82MB
- 1. Theory Part 1 - RNNs and LSTMs/2. Introduction to RNNs Part 1.mp4 79MB
- 3. Practical Part 1 - Introduction to PyTorch/2. Torch Tensors Part 1.mp4 78MB
- 4. Practical Part 2 - Processing the Dataset/4. Processing the Dataset Part 3.mp4 76MB
- 4. Practical Part 2 - Processing the Dataset/3. Processing the Data Part 2.mp4 74MB
- 3. Practical Part 1 - Introduction to PyTorch/1. Installing PyTorch and an Introduction.mp4 73MB
- 1. Theory Part 1 - RNNs and LSTMs/5. Playing with the Activations.mp4 72MB
- 4. Practical Part 2 - Processing the Dataset/2. Processing the Dataset Part 1.mp4 68MB
- 3. Practical Part 1 - Introduction to PyTorch/3. Torch Tensors Part 2.vtt 68MB
- 3. Practical Part 1 - Introduction to PyTorch/3. Torch Tensors Part 2.mp4 68MB
- 1. Theory Part 1 - RNNs and LSTMs/3. Introduction to RNNs Part 2.mp4 68MB
- 7. Practical Part 5 - Training the Model/1. Creating the Loss Function.mp4 67MB
- 1. Theory Part 1 - RNNs and LSTMs/6. LSTMs.mp4 67MB
- 4. Practical Part 2 - Processing the Dataset/9. Filtering the Text.mp4 63MB
- 6. Practical Part 4 - Building the Model/3. Understanding Pack Padded Sequence.mp4 59MB
- 4. Practical Part 2 - Processing the Dataset/5. Processing the Dataset Part 4.mp4 56MB
- 5. Practical Part 3 - Data Preperation/3. Preparing the Data for Model Part 2.mp4 55MB
- 6. Practical Part 4 - Building the Model/1. Understanding the Encoder.mp4 53MB
- 7. Practical Part 5 - Training the Model/2. Teacher Forcing.mp4 49MB
- 5. Practical Part 3 - Data Preperation/2. Understanding the zip function.mp4 45MB
- 2. Theory Part 2 - Sequence Modeling/1. Sequence-to-Sequence Models.mp4 44MB
- 2. Theory Part 2 - Sequence Modeling/2. Attention Mechanisms.mp4 40MB
- 2. Theory Part 2 - Sequence Modeling/3. How Attention Mechanisms Work.mp4 37MB
- 1. Theory Part 1 - RNNs and LSTMs/7. LSTM Variants.mp4 23MB
- 1. Theory Part 1 - RNNs and LSTMs/8. LSTM Step-by-Step Example Walktrough.mp4 23MB
- 6. Practical Part 4 - Building the Model/2. Defining the Encoder.vtt 28KB
- 6. Practical Part 4 - Building the Model/6. Designing the Decoder Part 2.vtt 20KB
- 6. Practical Part 4 - Building the Model/4. Designing the Attention Model.vtt 18KB
- 6. Practical Part 4 - Building the Model/5. Designing the Decoder Part 1.vtt 17KB
- 7. Practical Part 5 - Training the Model/3. Visualize Training Part 1.vtt 16KB
- 5. Practical Part 3 - Data Preperation/5. Preparing the Data for Model Part 4.vtt 15KB
- 7. Practical Part 5 - Training the Model/5. Training.vtt 14KB
- 5. Practical Part 3 - Data Preperation/1. Preparing the Data for Model Part 1.vtt 14KB
- 4. Practical Part 2 - Processing the Dataset/6. Processing the Words.vtt 14KB
- 3. Practical Part 1 - Introduction to PyTorch/2. Torch Tensors Part 1.vtt 13KB
- 7. Practical Part 5 - Training the Model/4. Visualize Training Part 2.vtt 13KB
- 1. Theory Part 1 - RNNs and LSTMs/2. Introduction to RNNs Part 1.vtt 13KB
- 3. Practical Part 1 - Introduction to PyTorch/1. Installing PyTorch and an Introduction.vtt 13KB
- 5. Practical Part 3 - Data Preperation/4. Preparing the Data for Model Part 3.vtt 12KB
- 4. Practical Part 2 - Processing the Dataset/1. The Dataset.vtt 11KB
- 4. Practical Part 2 - Processing the Dataset/7. Processing the Text.vtt 11KB
- 1. Theory Part 1 - RNNs and LSTMs/5. Playing with the Activations.vtt 11KB
- 1. Theory Part 1 - RNNs and LSTMs/6. LSTMs.vtt 11KB
- 4. Practical Part 2 - Processing the Dataset/10. Getting Rid of Rare Words.vtt 10KB
- 2. Theory Part 2 - Sequence Modeling/1. Sequence-to-Sequence Models.vtt 10KB
- 4. Practical Part 2 - Processing the Dataset/4. Processing the Dataset Part 3.vtt 10KB
- 4. Practical Part 2 - Processing the Dataset/8. Processing the Text Part 2.vtt 10KB
- 1. Theory Part 1 - RNNs and LSTMs/3. Introduction to RNNs Part 2.vtt 10KB
- 5. Practical Part 3 - Data Preperation/3. Preparing the Data for Model Part 2.vtt 9KB
- 4. Practical Part 2 - Processing the Dataset/3. Processing the Data Part 2.vtt 9KB
- 6. Practical Part 4 - Building the Model/3. Understanding Pack Padded Sequence.vtt 8KB
- 2. Theory Part 2 - Sequence Modeling/3. How Attention Mechanisms Work.vtt 8KB
- 4. Practical Part 2 - Processing the Dataset/9. Filtering the Text.vtt 8KB
- 4. Practical Part 2 - Processing the Dataset/2. Processing the Dataset Part 1.vtt 8KB
- 4. Practical Part 2 - Processing the Dataset/5. Processing the Dataset Part 4.vtt 8KB
- 7. Practical Part 5 - Training the Model/1. Creating the Loss Function.vtt 7KB
- 7. Practical Part 5 - Training the Model/2. Teacher Forcing.vtt 7KB
- 2. Theory Part 2 - Sequence Modeling/2. Attention Mechanisms.vtt 7KB
- 6. Practical Part 4 - Building the Model/1. Understanding the Encoder.vtt 7KB
- 5. Practical Part 3 - Data Preperation/2. Understanding the zip function.vtt 6KB
- 1. Theory Part 1 - RNNs and LSTMs/8. LSTM Step-by-Step Example Walktrough.vtt 5KB
- 1. Theory Part 1 - RNNs and LSTMs/7. LSTM Variants.vtt 4KB
- 1. Theory Part 1 - RNNs and LSTMs/1. Before we Start.html 1KB
- 7. Practical Part 5 - Training the Model/6. Proceeding.html 384B
- 1. Theory Part 1 - RNNs and LSTMs/4. Test Your Understanding.html 160B
- PaidCoursesForFree.com.url 121B