GetFreeCourses.Co-Udemy-Complete Tensorflow 2 and Keras Deep Learning Bootcamp
- 收录时间:2021-06-21 03:06:13
- 文件大小:7GB
- 下载次数:1
- 最近下载:2021-06-21 03:06:13
- 磁力链接:
-
文件列表
- 1. Course Overview, Installs, and Setup/3. Course Setup and Installation.mp4 152MB
- 13. Deployment/7. Flask Front End.mp4 150MB
- 9. Recurrent Neural Networks - RNNs/14. Bonus - Multivariate Time Series - RNN and LSTMs.mp4 149MB
- 9. Recurrent Neural Networks - RNNs/13. RNN Exercise - Solutions.mp4 148MB
- 7. Basic Artificial Neural Networks - ANNs/27. Tensorboard.mp4 144MB
- 7. Basic Artificial Neural Networks - ANNs/20. Keras Project Solutions - Exploratory Data Analysis.mp4 144MB
- 7. Basic Artificial Neural Networks - ANNs/12. Keras Regression Code Along - Exploratory Data Analysis.mp4 137MB
- 12. Generative Adversarial Networks/4. Creating a GAN - Part Three - Model Training.mp4 132MB
- 9. Recurrent Neural Networks - RNNs/11. RNN on a Time Series - Part Two.mp4 131MB
- 13. Deployment/8. Live Deployment to the Web.mp4 127MB
- 7. Basic Artificial Neural Networks - ANNs/23. Keras Project Solutions - Categorical Data.mp4 125MB
- 11. AutoEncoders/3. Autoencoder for Dimensionality Reduction.mp4 117MB
- 7. Basic Artificial Neural Networks - ANNs/17. Keras Classification - Dealing with Overfitting and Evaluation.mp4 111MB
- 1. Course Overview, Installs, and Setup/3.1 FINAL_TF2_FILES.zip 99MB
- 1. Course Overview, Installs, and Setup/4.1 FINAL_TF2_FILES.zip 99MB
- 8. Convolutional Neural Networks - CNNs/7. CNN on MNIST - Part Two - Creating and Training the Model.mp4 99MB
- 7. Basic Artificial Neural Networks - ANNs/21. Keras Project Solutions - Dealing with Missing Data.mp4 97MB
- 11. AutoEncoders/4. Autoencoder for Images - Part One.mp4 94MB
- 4. Pandas Crash Course/8. Data Input and Output.mp4 93MB
- 5. Visualization Crash Course/3. Seaborn Basics.mp4 92MB
- 8. Convolutional Neural Networks - CNNs/14. CNN on Real Image Files - Part Three - Creating the Model.mp4 91MB
- 3. NumPy Crash Course/2. NumPy Arrays.mp4 89MB
- 8. Convolutional Neural Networks - CNNs/13. CNN on Real Image Files - Part Two - Data Processing.mp4 88MB
- 13. Deployment/2. Creating the Model.mp4 87MB
- 7. Basic Artificial Neural Networks - ANNs/22. Keras Project Solutions - Dealing with Missing Data - Part Two.mp4 85MB
- 7. Basic Artificial Neural Networks - ANNs/10. Keras Syntax Basics - Part Two - Creating and Training the Model.mp4 85MB
- 9. Recurrent Neural Networks - RNNs/8. RNN on a Sine Wave - Creating the Model.mp4 84MB
- 9. Recurrent Neural Networks - RNNs/9. RNN on a Sine Wave - LSTMs and Forecasting.mp4 83MB
- 6. Machine Learning Concepts Overview/4. Evaluating Performance - Classification Error Metrics.mp4 83MB
- 10. Natural Language Processing/4. NLP - Part Three - Creating Batches.mp4 82MB
- 8. Convolutional Neural Networks - CNNs/12. CNN on Real Image Files - Part One - Reading in the Data.mp4 81MB
- 7. Basic Artificial Neural Networks - ANNs/19. TensorFlow 2.0 Keras Project Notebook Overview.mp4 81MB
- 11. AutoEncoders/7. Autoencoder Exercise - Solutions.mp4 78MB
- 7. Basic Artificial Neural Networks - ANNs/13. Keras Regression Code Along - Exploratory Data Analysis - Continued.mp4 76MB
- 7. Basic Artificial Neural Networks - ANNs/6. Cost Functions and Gradient Descent.mp4 76MB
- 8. Convolutional Neural Networks - CNNs/2. Image Filters and Kernels.mp4 72MB
- 12. Generative Adversarial Networks/3. Creating a GAN - Part Two - The Model.mp4 70MB
- 13. Deployment/5. Flask Postman API.mp4 69MB
- 7. Basic Artificial Neural Networks - ANNs/15. Keras Regression Code Along - Model Evaluation and Predictions.mp4 69MB
- 10. Natural Language Processing/6. NLP - Part Five - Training the Model.mp4 65MB
- 7. Basic Artificial Neural Networks - ANNs/11. Keras Syntax Basics - Part Three - Model Evaluation.mp4 65MB
- 10. Natural Language Processing/5. NLP - Part Four - Creating the Model.mp4 64MB
- 8. Convolutional Neural Networks - CNNs/9. CNN on CIFAR-10 - Part One - The Data.mp4 64MB
- 7. Basic Artificial Neural Networks - ANNs/26. Keras Project Solutions - Model Evaluation.mp4 63MB
- 7. Basic Artificial Neural Networks - ANNs/4. Activation Functions.mp4 63MB
- 13. Deployment/4. Running a Basic Flask Application.mp4 62MB
- 4. Pandas Crash Course/7. Pandas Operations.mp4 61MB
- 11. AutoEncoders/5. Autoencoder for Images - Part Two - Noise Removal.mp4 61MB
- 8. Convolutional Neural Networks - CNNs/6. CNN on MNIST - Part One - The Data.mp4 60MB
- 8. Convolutional Neural Networks - CNNs/3. Convolutional Layers.mp4 58MB
- 7. Basic Artificial Neural Networks - ANNs/7. Backpropagation.mp4 58MB
- 12. Generative Adversarial Networks/5. DCGAN - Deep Convolutional Generative Adversarial Networks.mp4 57MB
- 4. Pandas Crash Course/6. GroupBy Operations.mp4 56MB
- 7. Basic Artificial Neural Networks - ANNs/16. Keras Classification Code Along - EDA and Preprocessing.mp4 56MB
- 8. Convolutional Neural Networks - CNNs/17. CNN Exercise Solutions.mp4 56MB
- 12. Generative Adversarial Networks/1. GANs Overview.mp4 54MB
- 13. Deployment/3. Model Prediction Function.mp4 53MB
- 10. Natural Language Processing/7. NLP - Part Six - Generating Text.mp4 52MB
- 4. Pandas Crash Course/10. Pandas Exercises - Solutions.mp4 51MB
- 7. Basic Artificial Neural Networks - ANNs/9. Keras Syntax Basics - Part One - Preparing the Data.mp4 51MB
- 5. Visualization Crash Course/5. Data Visualization Exercises - Solutions.mp4 50MB
- 9. Recurrent Neural Networks - RNNs/7. RNN on a Sine Wave - Batch Generator.mp4 50MB
- 3. NumPy Crash Course/4. NumPy Operations.mp4 49MB
- 3. NumPy Crash Course/6. Numpy Exercises - Solutions.mp4 49MB
- 7. Basic Artificial Neural Networks - ANNs/2. Perceptron Model.mp4 48MB
- 8. Convolutional Neural Networks - CNNs/15. CNN on Real Image Files - Part Four - Evaluating the Model.mp4 47MB
- 7. Basic Artificial Neural Networks - ANNs/14. Keras Regression Code Along - Data Preprocessing and Creating a Model.mp4 47MB
- 3. NumPy Crash Course/3. Numpy Index Selection.mp4 46MB
- 7. Basic Artificial Neural Networks - ANNs/5. Multi-Class Classification Considerations.mp4 46MB
- 8. Convolutional Neural Networks - CNNs/10. CNN on CIFAR-10 - Part Two - Evaluating the Model.mp4 45MB
- 4. Pandas Crash Course/3. Pandas DataFrames - Part One.mp4 45MB
- 9. Recurrent Neural Networks - RNNs/10. RNN on a Time Series - Part One.mp4 45MB
- 4. Pandas Crash Course/5. Pandas Missing Data.mp4 44MB
- 11. AutoEncoders/2. Autoencoder Basics.mp4 43MB
- 9. Recurrent Neural Networks - RNNs/4. LSTMS and GRU.mp4 42MB
- 5. Visualization Crash Course/2. Matplotlib Basics.mp4 41MB
- 9. Recurrent Neural Networks - RNNs/6. RNN on a Sine Wave - The Data.mp4 40MB
- 6. Machine Learning Concepts Overview/2. Supervised Learning Overview.mp4 40MB
- 8. Convolutional Neural Networks - CNNs/8. CNN on MNIST - Part Three - Model Evaluation.mp4 38MB
- 4. Pandas Crash Course/2. Pandas Series.mp4 38MB
- 4. Pandas Crash Course/4. Pandas DataFrames - Part Two.mp4 37MB
- 7. Basic Artificial Neural Networks - ANNs/3. Neural Networks.mp4 36MB
- 10. Natural Language Processing/1. Introduction to NLP Section.mp4 35MB
- 11. AutoEncoders/6. Autoencoder Exercise Overview.mp4 34MB
- 9. Recurrent Neural Networks - RNNs/5. RNN Batches.mp4 33MB
- 9. Recurrent Neural Networks - RNNs/2. RNN Basic Theory.mp4 30MB
- 9. Recurrent Neural Networks - RNNs/12. RNN Exercise.mp4 30MB
- 7. Basic Artificial Neural Networks - ANNs/25. Keras Project Solutions - Creating and Training a Model.mp4 30MB
- 8. Convolutional Neural Networks - CNNs/11. Downloading Data Set for Real Image Lectures.mp4 28MB
- 6. Machine Learning Concepts Overview/1. What is Machine Learning.mp4 28MB
- 9. Recurrent Neural Networks - RNNs/3. Vanishing Gradients.mp4 28MB
- 8. Convolutional Neural Networks - CNNs/4. Pooling Layers.mp4 28MB
- 6. Machine Learning Concepts Overview/3. Overfitting.mp4 26MB
- 1. Course Overview, Installs, and Setup/2. Course Overview.mp4 26MB
- 4. Pandas Crash Course/1. Introduction to Pandas.mp4 25MB
- 7. Basic Artificial Neural Networks - ANNs/24. Keras Project Solutions - Data PreProcessing.mp4 24MB
- 6. Machine Learning Concepts Overview/5. Evaluating Performance - Regression Error Metrics.mp4 24MB
- 4. Pandas Crash Course/9. Pandas Exercises.mp4 23MB
- 13. Deployment/1. Introduction to Deployment.mp4 23MB
- 10. Natural Language Processing/3. NLP - Part Two - Text Processing.mp4 23MB
- 5. Visualization Crash Course/4. Data Visualization Exercises.mp4 23MB
- 10. Natural Language Processing/2. NLP - Part One - The Data.mp4 22MB
- 8. Convolutional Neural Networks - CNNs/5. MNIST Data Set Overview.mp4 21MB
- 11. AutoEncoders/1. Introduction to Autoencoders.mp4 21MB
- 13. Deployment/6. Flask API - Using Requests Programmatically.mp4 20MB
- 12. Generative Adversarial Networks/2. Creating a GAN - Part One- The Data.mp4 19MB
- 6. Machine Learning Concepts Overview/6. Unsupervised Learning.mp4 19MB
- 8. Convolutional Neural Networks - CNNs/16. CNN Exercise Overview.mp4 18MB
- 3. NumPy Crash Course/5. NumPy Exercises.mp4 12MB
- 3. NumPy Crash Course/1. Introduction to NumPy.mp4 11MB
- 9. Recurrent Neural Networks - RNNs/1. RNN Section Overview.mp4 11MB
- 7. Basic Artificial Neural Networks - ANNs/8. TensorFlow vs. Keras Explained.mp4 10MB
- 7. Basic Artificial Neural Networks - ANNs/1. Introduction to ANN Section.mp4 10MB
- 7. Basic Artificial Neural Networks - ANNs/18. TensorFlow 2.0 Keras Project Options Overview.mp4 8MB
- 8. Convolutional Neural Networks - CNNs/1. CNN Section Overview.mp4 8MB
- 5. Visualization Crash Course/1. Introduction to Python Visualization.mp4 7MB
- 1. Course Overview, Installs, and Setup/3. Course Setup and Installation.srt 35KB
- 12. Generative Adversarial Networks/4. Creating a GAN - Part Three - Model Training.srt 34KB
- 9. Recurrent Neural Networks - RNNs/13. RNN Exercise - Solutions.srt 32KB
- 9. Recurrent Neural Networks - RNNs/11. RNN on a Time Series - Part Two.srt 31KB
- 7. Basic Artificial Neural Networks - ANNs/27. Tensorboard.srt 29KB
- 11. AutoEncoders/3. Autoencoder for Dimensionality Reduction.srt 28KB
- 7. Basic Artificial Neural Networks - ANNs/20. Keras Project Solutions - Exploratory Data Analysis.srt 28KB
- 3. NumPy Crash Course/2. NumPy Arrays.srt 27KB
- 7. Basic Artificial Neural Networks - ANNs/6. Cost Functions and Gradient Descent.srt 27KB
- 13. Deployment/7. Flask Front End.srt 26KB
- 9. Recurrent Neural Networks - RNNs/14. Bonus - Multivariate Time Series - RNN and LSTMs.srt 26KB
- 7. Basic Artificial Neural Networks - ANNs/12. Keras Regression Code Along - Exploratory Data Analysis.srt 26KB
- 7. Basic Artificial Neural Networks - ANNs/23. Keras Project Solutions - Categorical Data.srt 25KB
- 6. Machine Learning Concepts Overview/4. Evaluating Performance - Classification Error Metrics.srt 25KB
- 5. Visualization Crash Course/3. Seaborn Basics.srt 24KB
- 13. Deployment/8. Live Deployment to the Web.srt 24KB
- 7. Basic Artificial Neural Networks - ANNs/17. Keras Classification - Dealing with Overfitting and Evaluation.srt 24KB
- 11. AutoEncoders/4. Autoencoder for Images - Part One.srt 23KB
- 8. Convolutional Neural Networks - CNNs/7. CNN on MNIST - Part Two - Creating and Training the Model.srt 23KB
- 8. Convolutional Neural Networks - CNNs/13. CNN on Real Image Files - Part Two - Data Processing.srt 23KB
- 13. Deployment/2. Creating the Model.srt 22KB
- 8. Convolutional Neural Networks - CNNs/3. Convolutional Layers.srt 21KB
- 9. Recurrent Neural Networks - RNNs/8. RNN on a Sine Wave - Creating the Model.srt 21KB
- 7. Basic Artificial Neural Networks - ANNs/21. Keras Project Solutions - Dealing with Missing Data.srt 20KB
- 7. Basic Artificial Neural Networks - ANNs/7. Backpropagation.srt 20KB
- 7. Basic Artificial Neural Networks - ANNs/10. Keras Syntax Basics - Part Two - Creating and Training the Model.srt 20KB
- 8. Convolutional Neural Networks - CNNs/12. CNN on Real Image Files - Part One - Reading in the Data.srt 20KB
- 8. Convolutional Neural Networks - CNNs/14. CNN on Real Image Files - Part Three - Creating the Model.srt 20KB
- 4. Pandas Crash Course/7. Pandas Operations.srt 19KB
- 7. Basic Artificial Neural Networks - ANNs/13. Keras Regression Code Along - Exploratory Data Analysis - Continued.srt 18KB
- 9. Recurrent Neural Networks - RNNs/9. RNN on a Sine Wave - LSTMs and Forecasting.srt 18KB
- 8. Convolutional Neural Networks - CNNs/2. Image Filters and Kernels.srt 18KB
- 10. Natural Language Processing/4. NLP - Part Three - Creating Batches.srt 18KB
- 8. Convolutional Neural Networks - CNNs/6. CNN on MNIST - Part One - The Data.srt 18KB
- 4. Pandas Crash Course/3. Pandas DataFrames - Part One.srt 17KB
- 12. Generative Adversarial Networks/3. Creating a GAN - Part Two - The Model.srt 17KB
- 7. Basic Artificial Neural Networks - ANNs/22. Keras Project Solutions - Dealing with Missing Data - Part Two.srt 17KB
- 4. Pandas Crash Course/8. Data Input and Output.srt 17KB
- 7. Basic Artificial Neural Networks - ANNs/11. Keras Syntax Basics - Part Three - Model Evaluation.srt 17KB
- 9. Recurrent Neural Networks - RNNs/4. LSTMS and GRU.srt 17KB
- 8. Convolutional Neural Networks - CNNs/9. CNN on CIFAR-10 - Part One - The Data.srt 16KB
- 7. Basic Artificial Neural Networks - ANNs/4. Activation Functions.srt 16KB
- 7. Basic Artificial Neural Networks - ANNs/5. Multi-Class Classification Considerations.srt 16KB
- 7. Basic Artificial Neural Networks - ANNs/15. Keras Regression Code Along - Model Evaluation and Predictions.srt 16KB
- 13. Deployment/4. Running a Basic Flask Application.srt 15KB
- 3. NumPy Crash Course/3. Numpy Index Selection.srt 15KB
- 4. Pandas Crash Course/5. Pandas Missing Data.srt 15KB
- 13. Deployment/5. Flask Postman API.srt 15KB
- 7. Basic Artificial Neural Networks - ANNs/9. Keras Syntax Basics - Part One - Preparing the Data.srt 15KB
- 7. Basic Artificial Neural Networks - ANNs/2. Perceptron Model.srt 15KB
- 10. Natural Language Processing/5. NLP - Part Four - Creating the Model.srt 14KB
- 4. Pandas Crash Course/6. GroupBy Operations.srt 14KB
- 11. AutoEncoders/7. Autoencoder Exercise - Solutions.srt 14KB
- 10. Natural Language Processing/6. NLP - Part Five - Training the Model.srt 14KB
- 4. Pandas Crash Course/4. Pandas DataFrames - Part Two.srt 14KB
- 9. Recurrent Neural Networks - RNNs/10. RNN on a Time Series - Part One.srt 14KB
- 7. Basic Artificial Neural Networks - ANNs/26. Keras Project Solutions - Model Evaluation.srt 13KB
- 5. Visualization Crash Course/2. Matplotlib Basics.srt 13KB
- 4. Pandas Crash Course/2. Pandas Series.srt 12KB
- 13. Deployment/3. Model Prediction Function.srt 12KB
- 7. Basic Artificial Neural Networks - ANNs/19. TensorFlow 2.0 Keras Project Notebook Overview.srt 12KB
- 6. Machine Learning Concepts Overview/2. Supervised Learning Overview.srt 12KB
- 9. Recurrent Neural Networks - RNNs/6. RNN on a Sine Wave - The Data.srt 12KB
- 8. Convolutional Neural Networks - CNNs/15. CNN on Real Image Files - Part Four - Evaluating the Model.srt 12KB
- 9. Recurrent Neural Networks - RNNs/5. RNN Batches.srt 12KB
- 6. Machine Learning Concepts Overview/3. Overfitting.srt 12KB
- 7. Basic Artificial Neural Networks - ANNs/14. Keras Regression Code Along - Data Preprocessing and Creating a Model.srt 12KB
- 12. Generative Adversarial Networks/1. GANs Overview.srt 12KB
- 3. NumPy Crash Course/4. NumPy Operations.srt 12KB
- 10. Natural Language Processing/7. NLP - Part Six - Generating Text.srt 12KB
- 8. Convolutional Neural Networks - CNNs/17. CNN Exercise Solutions.srt 12KB
- 9. Recurrent Neural Networks - RNNs/2. RNN Basic Theory.srt 11KB
- 11. AutoEncoders/2. Autoencoder Basics.srt 11KB
- 11. AutoEncoders/5. Autoencoder for Images - Part Two - Noise Removal.srt 11KB
- 9. Recurrent Neural Networks - RNNs/7. RNN on a Sine Wave - Batch Generator.srt 11KB
- 7. Basic Artificial Neural Networks - ANNs/16. Keras Classification Code Along - EDA and Preprocessing.srt 11KB
- 9. Recurrent Neural Networks - RNNs/3. Vanishing Gradients.srt 11KB
- 5. Visualization Crash Course/5. Data Visualization Exercises - Solutions.srt 11KB
- 7. Basic Artificial Neural Networks - ANNs/3. Neural Networks.srt 11KB
- 3. NumPy Crash Course/6. Numpy Exercises - Solutions.srt 11KB
- 8. Convolutional Neural Networks - CNNs/10. CNN on CIFAR-10 - Part Two - Evaluating the Model.srt 10KB
- 4. Pandas Crash Course/10. Pandas Exercises - Solutions.srt 10KB
- 8. Convolutional Neural Networks - CNNs/4. Pooling Layers.srt 10KB
- 12. Generative Adversarial Networks/5. DCGAN - Deep Convolutional Generative Adversarial Networks.srt 10KB
- 8. Convolutional Neural Networks - CNNs/8. CNN on MNIST - Part Three - Model Evaluation.srt 10KB
- 10. Natural Language Processing/1. Introduction to NLP Section.srt 9KB
- 8. Convolutional Neural Networks - CNNs/11. Downloading Data Set for Real Image Lectures.srt 9KB
- 6. Machine Learning Concepts Overview/5. Evaluating Performance - Regression Error Metrics.srt 8KB
- 6. Machine Learning Concepts Overview/1. What is Machine Learning.srt 8KB
- 1. Course Overview, Installs, and Setup/2. Course Overview.srt 7KB
- 6. Machine Learning Concepts Overview/6. Unsupervised Learning.srt 7KB
- 8. Convolutional Neural Networks - CNNs/5. MNIST Data Set Overview.srt 7KB
- 10. Natural Language Processing/2. NLP - Part One - The Data.srt 7KB
- 9. Recurrent Neural Networks - RNNs/12. RNN Exercise.srt 7KB
- 12. Generative Adversarial Networks/2. Creating a GAN - Part One- The Data.srt 6KB
- 4. Pandas Crash Course/1. Introduction to Pandas.srt 6KB
- 10. Natural Language Processing/3. NLP - Part Two - Text Processing.srt 6KB
- 7. Basic Artificial Neural Networks - ANNs/25. Keras Project Solutions - Creating and Training a Model.srt 6KB
- 13. Deployment/6. Flask API - Using Requests Programmatically.srt 6KB
- 13. Deployment/1. Introduction to Deployment.srt 5KB
- 1. Course Overview, Installs, and Setup/4. FAQ - Frequently Asked Questions.html 5KB
- 11. AutoEncoders/6. Autoencoder Exercise Overview.srt 5KB
- 5. Visualization Crash Course/4. Data Visualization Exercises.srt 5KB
- 11. AutoEncoders/1. Introduction to Autoencoders.srt 5KB
- 7. Basic Artificial Neural Networks - ANNs/24. Keras Project Solutions - Data PreProcessing.srt 5KB
- 4. Pandas Crash Course/9. Pandas Exercises.srt 4KB
- 9. Recurrent Neural Networks - RNNs/1. RNN Section Overview.srt 4KB
- 8. Convolutional Neural Networks - CNNs/16. CNN Exercise Overview.srt 4KB
- 3. NumPy Crash Course/1. Introduction to NumPy.srt 3KB
- 7. Basic Artificial Neural Networks - ANNs/1. Introduction to ANN Section.srt 3KB
- 7. Basic Artificial Neural Networks - ANNs/8. TensorFlow vs. Keras Explained.srt 3KB
- 7. Basic Artificial Neural Networks - ANNs/18. TensorFlow 2.0 Keras Project Options Overview.srt 3KB
- 8. Convolutional Neural Networks - CNNs/1. CNN Section Overview.srt 2KB
- 3. NumPy Crash Course/5. NumPy Exercises.srt 2KB
- 5. Visualization Crash Course/1. Introduction to Python Visualization.srt 2KB
- 1. Course Overview, Installs, and Setup/1. Auto-Welcome Message.html 1KB
- 10. Natural Language Processing/How you can help GetFreeCourses.Co.txt 182B
- 4. Pandas Crash Course/How you can help GetFreeCourses.Co.txt 182B
- 7. Basic Artificial Neural Networks - ANNs/How you can help GetFreeCourses.Co.txt 182B
- How you can help GetFreeCourses.Co.txt 182B
- 2. COURSE OVERVIEW CONFIRMATION/1. PLEASE WATCH COURSE OVERVIEW LECTURE.html 165B
- 9. Recurrent Neural Networks - RNNs/4.2 How to choose between LSTM vs GRU.html 140B
- 1. Course Overview, Installs, and Setup/3.2 requirements.txt 138B
- 8. Convolutional Neural Networks - CNNs/11.1 Direct Link to Download cell_images.zip (Note You can't preview a zip file) Just download it..html 127B
- 10. Natural Language Processing/Download Paid Udemy Courses For Free.url 116B
- 10. Natural Language Processing/GetFreeCourses.Co.url 116B
- 4. Pandas Crash Course/Download Paid Udemy Courses For Free.url 116B
- 4. Pandas Crash Course/GetFreeCourses.Co.url 116B
- 7. Basic Artificial Neural Networks - ANNs/Download Paid Udemy Courses For Free.url 116B
- 7. Basic Artificial Neural Networks - ANNs/GetFreeCourses.Co.url 116B
- 9. Recurrent Neural Networks - RNNs/4.3 Famous Karpathy Blog Post.html 116B
- Download Paid Udemy Courses For Free.url 116B
- GetFreeCourses.Co.url 116B
- 9. Recurrent Neural Networks - RNNs/4.1 Wikipedia Article Describing LSTM Variants.html 113B
- 7. Basic Artificial Neural Networks - ANNs/7.1 Great walkthrough for BackPropagation!.html 112B
- 9. Recurrent Neural Networks - RNNs/4.4 Great Blog Post on Exploring LSTM Neurons.html 109B