O`REILLY - Data Science Bookcamp, VIDEO EDITION
- 收录时间:2022-03-31 10:42:50
- 文件大小:6GB
- 下载次数:1
- 最近下载:2022-03-31 10:42:50
- 磁力链接:
-
文件列表
- 113 - Chapter 21. Measuring feature importance with coefficients.mp4 93MB
- 71 - Chapter 15. Clustering texts by topic, Part 2.mp4 87MB
- 66 - Chapter 15. Vectorizing documents using scikit-learn.mp4 87MB
- 86 - Case study 5 - Predicting future friendships from social network data.mp4 80MB
- 23 - Chapter 7. Data dredging - Coming to false conclusions through oversampling.mp4 80MB
- 14 - Chapter 5. Basic probability and statistical analysis using SciPy.mp4 76MB
- 98 - Chapter 19. Community detection using Markov clustering, Part 2.mp4 75MB
- 93 - Chapter 19. Dynamic graph theory techniques for node ranking and social network analysis.mp4 75MB
- 87 - Chapter 18. An introduction to graph theory and network analysis.mp4 75MB
- 16 - Chapter 5. Variance as a measure of dispersion.mp4 74MB
- 70 - Chapter 15. Clustering texts by topic, Part 1.mp4 73MB
- 109 - Chapter 21. Training a linear classifier, Part 2.mp4 73MB
- 81 - Chapter 17. Filtering jobs by relevance.mp4 73MB
- 44 - Chapter 12. Visualizing and clustering the extracted location data.mp4 71MB
- 84 - Chapter 17. Exploring clusters at alternative values of K.mp4 69MB
- 42 - Chapter 11. Limitations of the GeoNamesCache library.mp4 69MB
- 36 - Chapter 10. Clustering based on non-Euclidean distance.mp4 69MB
- 64 - Chapter 14. Efficient dimension reduction using SVD and scikit-learn.mp4 69MB
- 22 - Chapter 7. Assessing the divergence between sample mean and population mean.mp4 68MB
- 82 - Chapter 17. Clustering skills in relevant job postings.mp4 67MB
- 05 - Chapter 2. Comparing multiple coin-flip probability distributions.mp4 66MB
- 114 - Chapter 22. Training nonlinear classifiers with decision tree techniques.mp4 65MB
- 58 - Chapter 14. Dimension reduction using PCA and scikit-learn.mp4 65MB
- 20 - Chapter 6. Computing the area beneath a normal curve.mp4 65MB
- 128 - Chapter 23. Interpreting the trained model.mp4 64MB
- 106 - Chapter 20. Limitations of the KNN algorithm.mp4 63MB
- 76 - Chapter 16. The structure of HTML documents.mp4 63MB
- 41 - Chapter 11. Location tracking using GeoNamesCache.mp4 62MB
- 126 - Chapter 23. Adding profile features to the model.mp4 62MB
- 55 - Chapter 14. Dimension reduction of matrix data.mp4 62MB
- 33 - Chapter 10. Clustering data into groups.mp4 61MB
- 34 - Chapter 10. K-means - A clustering algorithm for grouping data into K central groups.mp4 61MB
- 03 - Chapter 1. Problem 2 - Analyzing multiple die rolls.mp4 61MB
- 69 - Chapter 15. Computing similarities across large document datasets.mp4 60MB
- 97 - Chapter 19. Community detection using Markov clustering, Part 1.mp4 60MB
- 80 - Chapter 17. Exploring the HTML for skill descriptions.mp4 60MB
- 119 - Chapter 22. Studying cancerous cells using feature importance.mp4 59MB
- 72 - Chapter 15. Visualizing text clusters.mp4 59MB
- 74 - Chapter 15. Using subplots to display multiple word clouds, Part 2.mp4 59MB
- 17 - Chapter 6. Making predictions using the central limit theorem and SciPy.mp4 59MB
- 40 - Chapter 11. Visualizing maps.mp4 58MB
- 107 - Chapter 21. Training linear classifiers with logistic regression.mp4 58MB
- 99 - Chapter 19. Uncovering friend groups in social networks.mp4 58MB
- 117 - Chapter 22. Training if_else models with more than two features.mp4 58MB
- 08 - Chapter 3. Deriving probabilities from histograms.mp4 58MB
- 90 - Chapter 18. Utilizing undirected graphs to optimize the travel time between towns.mp4 57MB
- 120 - Chapter 22. Improving performance using random forest classification.mp4 57MB
- 116 - Chapter 22. Deciding which feature to split on.mp4 57MB
- 02 - Chapter 1. Computing probabilities using Python This section covers.mp4 57MB
- 67 - Chapter 15. Ranking words by both post frequency and count, Part 1.mp4 57MB
- 103 - Chapter 20. Measuring predicted label accuracy, Part 2.mp4 55MB
- 19 - Chapter 6. Determining the mean and variance of a population through random sampling.mp4 55MB
- 59 - Chapter 14. Clustering 4D data in two dimensions.mp4 54MB
- 125 - Chapter 23. Training a predictive model using network features, Part 2.mp4 54MB
- 04 - Chapter 2. Plotting probabilities using Matplotlib.mp4 54MB
- 24 - Chapter 7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 1.mp4 53MB
- 115 - Chapter 22. Training a nested if_else model using two features.mp4 53MB
- 89 - Chapter 18. Analyzing web networks using NetworkX, Part 2.mp4 53MB
- 09 - Chapter 3. Computing histograms in NumPy.mp4 53MB
- 121 - Chapter 22. Training random forest classifiers using scikit-learn.mp4 53MB
- 25 - Chapter 7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 2.mp4 53MB
- 124 - Chapter 23. Training a predictive model using network features, Part 1.mp4 53MB
- 35 - Chapter 10. Using density to discover clusters.mp4 52MB
- 118 - Chapter 22. Training decision tree classifiers using scikit-learn.mp4 52MB
- 73 - Chapter 15. Using subplots to display multiple word clouds, Part 1.mp4 51MB
- 112 - Chapter 21. Training linear classifiers using scikit-learn.mp4 50MB
- 101 - Chapter 20. The basics of supervised machine learning.mp4 49MB
- 92 - Chapter 18. Computing the fastest travel time between nodes, Part 2.mp4 49MB
- 100 - Chapter 20. Network-driven supervised machine learning.mp4 49MB
- 52 - Chapter 13. Basic matrix operations, Part 1.mp4 49MB
- 50 - Chapter 13. Using normalization to improve TF vector similarity.mp4 49MB
- 95 - Chapter 19. Deriving PageRank centrality from probability theory.mp4 48MB
- 68 - Chapter 15. Ranking words by both post frequency and count, Part 2.mp4 48MB
- 54 - Chapter 13. Computational limits of matrix multiplication.mp4 48MB
- 61 - Chapter 14. Computing principal components without rotation.mp4 48MB
- 07 - Chapter 3. Computing confidence intervals using histograms and NumPy arrays.mp4 48MB
- 65 - Chapter 15. NLP analysis of large text datasets.mp4 47MB
- 12 - Chapter 4. Optimizing strategies using the sample space for a 10-card deck.mp4 47MB
- 78 - Chapter 16. Parsing HTML using Beautiful Soup, Part 2.mp4 47MB
- 38 - Chapter 11. Geographic location visualization and analysis.mp4 47MB
- 62 - Chapter 14. Extracting eigenvectors using power iteration, Part 1.mp4 45MB
- 96 - Chapter 19. Computing PageRank centrality using NetworkX.mp4 45MB
- 49 - Chapter 13. Vectorizing texts using word counts.mp4 44MB
- 47 - Chapter 13. Simple text comparison.mp4 44MB
- 26 - Chapter 7. Permutation testing - Comparing means of samples when the population parameters are unknown.mp4 44MB
- 31 - Chapter 9. Determining statistical significance.mp4 44MB
- 108 - Chapter 21. Training a linear classifier, Part 1.mp4 44MB
- 110 - Chapter 21. Improving linear classification with logistic regression, Part 1.mp4 43MB
- 111 - Chapter 21. Improving linear classification with logistic regression, Part 2.mp4 43MB
- 127 - Chapter 23. Optimizing performance across a steady set of features.mp4 43MB
- 48 - Chapter 13. Replacing words with numeric values.mp4 42MB
- 51 - Chapter 13. Using unit vector dot products to convert between relevance metrics.mp4 42MB
- 83 - Chapter 17. Investigating the technical skill clusters.mp4 41MB
- 85 - Chapter 17. Analyzing the 700 most relevant postings.mp4 41MB
- 27 - Chapter 8. Analyzing tables using Pandas.mp4 41MB
- 37 - Chapter 10. Analyzing clusters using Pandas.mp4 40MB
- 77 - Chapter 16. Parsing HTML using Beautiful Soup, Part 1.mp4 40MB
- 29 - Chapter 8. Saving and loading table data.mp4 40MB
- 94 - Chapter 19. Computing travel probabilities using matrix multiplication.mp4 40MB
- 75 - Chapter 16. Extracting text from web pages.mp4 40MB
- 105 - Chapter 20. Running a grid search using scikit-learn.mp4 39MB
- 21 - Chapter 7. Statistical hypothesis testing.mp4 39MB
- 123 - Chapter 23. Exploring the experimental observations.mp4 39MB
- 56 - Chapter 14. Reducing dimensions using rotation, Part 1.mp4 39MB
- 28 - Chapter 8. Retrieving table rows.mp4 38MB
- 57 - Chapter 14. Reducing dimensions using rotation, Part 2.mp4 38MB
- 79 - Chapter 17. Case study 4 solution.mp4 37MB
- 102 - Chapter 20. Measuring predicted label accuracy, Part 1.mp4 37MB
- 15 - Chapter 5. Mean as a measure of centrality.mp4 37MB
- 06 - Chapter 3. Running random simulations in NumPy.mp4 36MB
- 46 - Chapter 13. Measuring text similarities.mp4 36MB
- 104 - Chapter 20. Optimizing KNN performance.mp4 36MB
- 10 - Chapter 3. Using permutations to shuffle cards.mp4 35MB
- 43 - Chapter 12. Case study 3 solution.mp4 35MB
- 63 - Chapter 14. Extracting eigenvectors using power iteration, Part 2.mp4 34MB
- 11 - Chapter 4. Case study 1 solution.mp4 34MB
- 30 - Chapter 9. Case study 2 solution.mp4 34MB
- 39 - Chapter 11. Plotting maps using Cartopy.mp4 33MB
- 122 - Chapter 23. Case study 5 solution.mp4 33MB
- 91 - Chapter 18. Computing the fastest travel time between nodes, Part 1.mp4 32MB
- 18 - Chapter 6. Comparing two sampled normal curves.mp4 31MB
- 13 - Case study 2 - Assessing online ad clicks for significance.mp4 31MB
- 88 - Chapter 18. Analyzing web networks using NetworkX, Part 1.mp4 31MB
- 60 - Chapter 14. Limitations of PCA.mp4 31MB
- 53 - Chapter 13. Basic matrix operations, Part 2.mp4 27MB
- 45 - Case study 4 - Using online job postings to improve your data science resume.mp4 24MB
- 01 - Case study 1 - Finding the winning strategy in a card game.mp4 7MB
- 32 - Case study 3 - Tracking disease outbreaks using news headlines.mp4 7MB