[ ] Udemy - Numerical Methods and Optimization in Python 收录时间:2022-08-27 02:21:06 文件大小:3GB 下载次数:1 最近下载:2022-08-27 02:21:06 磁力链接: magnet:?xt=urn:btih:42f3e1283060de23236e319e113f7f6bcf88318d 立即下载 复制链接 文件列表 ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/005 Stochastic gradient descent implementation I.mp4 106MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/008 ADAGrad implementation.mp4 64MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/017 Sorting.mp4 51MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/002 Gradient descent implementation.mp4 48MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/016 Sets in Python.mp4 47MB ~Get Your Files Here !/17 - Appendix #2 - Functions/003 Positional arguments and keyword arguments.mp4 46MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/011 ADAM optimizer implementation.mp4 43MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/005 DataFrame operations.mp4 41MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/006 Stochastic gradient descent implementation II.mp4 41MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/013 Comparing objects - overriding functions.mp4 40MB ~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/002 Monte-Carlo integral implementation I.mp4 40MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/006 Lists in Python - advanced operations.mp4 39MB ~Get Your Files Here !/09 - Interpolation/001 What is interpolation.mp4 39MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/015 Dictionaries in Python.mp4 38MB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/008 PageRank algorithm - the final formula.mp4 38MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/001 How to measure the running time of algorithms.mp4 37MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/004 Stochastic gradient descent introduction.mp4 36MB ~Get Your Files Here !/20 - Appendix #5 - NumPy/003 Dimension of arrays.mp4 36MB ~Get Your Files Here !/05 - Gauss Elimination Implementation/001 Gaussian elimination implementation I.mp4 36MB ~Get Your Files Here !/17 - Appendix #2 - Functions/008 What is recursion.mp4 35MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/007 Reading CSV and text files.mp4 35MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/012 What are linked list data structures.mp4 34MB ~Get Your Files Here !/13 - Differential Equations/004 Euler's method example - pendulum.mp4 34MB ~Get Your Files Here !/20 - Appendix #5 - NumPy/006 Reshape.mp4 34MB ~Get Your Files Here !/20 - Appendix #5 - NumPy/002 Creating and updating arrays.mp4 34MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/003 Using the constructor.mp4 34MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/010 Polymorphism and abstraction example.mp4 33MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/008 Operations.mp4 33MB ~Get Your Files Here !/20 - Appendix #5 - NumPy/004 Indexes and slicing.mp4 32MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/009 How to use multiple conditions.mp4 31MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/004 Class variables and instance variables.mp4 31MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/014 Hashing and O(1) running time complexity.mp4 31MB ~Get Your Files Here !/09 - Interpolation/004 Interpolation implementation II.mp4 31MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/010 Using the apply() function.mp4 31MB ~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/001 What is the Monte-Carlo method.mp4 30MB ~Get Your Files Here !/05 - Gauss Elimination Implementation/002 Gaussian elimination implementation II.mp4 30MB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/005 Matrix representation of the problem.mp4 29MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/006 Speed comparison - DataFrame operations.mp4 29MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/004 Strings.mp4 28MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/001 What is gradient descent.mp4 28MB ~Get Your Files Here !/20 - Appendix #5 - NumPy/007 Stacking and merging arrays.mp4 28MB ~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/004 Speed consideration - C, Java and Python.mp4 28MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/009 Data filtering.mp4 27MB ~Get Your Files Here !/03 - Linear Algebra/003 Running time analysis of matrix multiplication.mp4 27MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/003 Series.mp4 27MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/012 What is vectorization.mp4 26MB ~Get Your Files Here !/09 - Interpolation/003 Interpolation implementation I.mp4 26MB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/002 Crawling the web with breadth-first search.mp4 26MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/001 What is Pandas.mp4 25MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/005 String slicing.mp4 25MB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/001 Graph representation of the WWW.mp4 25MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/003 What are array data structures I.mp4 25MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/004 What are array data structures II.mp4 25MB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/004 PageRank algorithm example.mp4 25MB ~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/003 Monte-Carlo integral implementation II.mp4 25MB ~Get Your Files Here !/13 - Differential Equations/001 How to deal with differential equations.mp4 25MB ~Get Your Files Here !/13 - Differential Equations/007 Runge-Kutta method example I.mp4 24MB ~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/001 Floating point numbers.mp4 24MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/013 Doubly linked list implementation in Python.mp4 24MB ~Get Your Files Here !/10 - Root Finding/003 Bisection method implementation.mp4 24MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/007 Lists in Python - list comprehension.mp4 23MB ~Get Your Files Here !/11 - Numerical Integration/003 Rectangle method implementation.mp4 22MB ~Get Your Files Here !/13 - Differential Equations/008 Runge-Kutta method example II.mp4 22MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/013 Vectorization example I.mp4 22MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/007 What is ADAGrad.mp4 22MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/011 Modules.mp4 22MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/005 Lists in Python.mp4 22MB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/009 Power method.mp4 21MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/007 The super keyword.mp4 21MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/009 What is polymorphism.mp4 21MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/014 Vectorization example II.mp4 21MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/007 Operators.mp4 21MB ~Get Your Files Here !/03 - Linear Algebra/002 Matrix multiplication implementation.mp4 21MB ~Get Your Files Here !/11 - Numerical Integration/007 Simpson's method implementation.mp4 21MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/015 Break and continue.mp4 20MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/003 Gradient descent with momentum.mp4 20MB ~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/003 What is pivoting.mp4 20MB ~Get Your Files Here !/13 - Differential Equations/003 Euler's method example.mp4 20MB ~Get Your Files Here !/03 - Linear Algebra/006 Lists and NumPy arrays.mp4 19MB ~Get Your Files Here !/20 - Appendix #5 - NumPy/005 Types.mp4 19MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/005 Private variables and name mangling.mp4 19MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/009 What is RMSProp.mp4 19MB ~Get Your Files Here !/11 - Numerical Integration/004 Trapezoidal integral introduction.mp4 19MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/011 Loops - for loop.mp4 19MB ~Get Your Files Here !/17 - Appendix #2 - Functions/002 Defining functions.mp4 19MB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/006 The random surfer model.mp4 19MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/011 Mutability and immutability.mp4 18MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/004 DataFrames.mp4 18MB ~Get Your Files Here !/17 - Appendix #2 - Functions/006 Yield operator.mp4 18MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/008 Function (method) override.mp4 18MB ~Get Your Files Here !/11 - Numerical Integration/002 Rectangle method introduction.mp4 18MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/006 What is inheritance in OOP.mp4 18MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/008 Conditional statements.mp4 18MB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/003 The original formula.mp4 18MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/011 Speed comparison - loops and apply().mp4 18MB ~Get Your Files Here !/11 - Numerical Integration/005 Trapezoidal integral implementation.mp4 18MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/010 Logical operators.mp4 18MB ~Get Your Files Here !/17 - Appendix #2 - Functions/001 What are functions.mp4 17MB ~Get Your Files Here !/20 - Appendix #5 - NumPy/001 What is the key advantage of NumPy.mp4 17MB ~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/001 What is Gaussian elimination.mp4 17MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/006 Type casting.mp4 17MB ~Get Your Files Here !/03 - Linear Algebra/005 Inner product.mp4 17MB ~Get Your Files Here !/10 - Root Finding/004 Newton method introduction.mp4 16MB ~Get Your Files Here !/13 - Differential Equations/005 Euler's method example - pendulum with drag.mp4 16MB ~Get Your Files Here !/10 - Root Finding/005 Newton method implementation.mp4 16MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/002 What are the basic data types.mp4 16MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/012 The __str__ function.mp4 16MB ~Get Your Files Here !/17 - Appendix #2 - Functions/007 What are the most relevant built-in functions.mp4 15MB ~Get Your Files Here !/20 - Appendix #5 - NumPy/008 Filter.mp4 15MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/014 Enumerate.mp4 15MB ~Get Your Files Here !/09 - Interpolation/002 Interpolation illustration.mp4 15MB ~Get Your Files Here !/17 - Appendix #2 - Functions/009 Local vs global variables.mp4 15MB ~Get Your Files Here !/17 - Appendix #2 - Functions/010 The __main__ function.mp4 15MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/010 What are tuples.mp4 15MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/012 Loops - while loop.mp4 14MB ~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/001 What are eigenvalues and eigenvectors.mp4 14MB ~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/004 Applications of Monte-Carlo simulations in finance.mp4 14MB ~Get Your Files Here !/13 - Differential Equations/006 Runge-Kutta method introduction.mp4 14MB ~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/003 Rounding errors.mp4 14MB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/002 Data structures introduction.mp4 14MB ~Get Your Files Here !/06 - #1 Challenge - Portfolio Optimization/002 Portfolio optimization implementation.mp4 14MB ~Get Your Files Here !/03 - Linear Algebra/007 Matrix operations with NumPy.mp4 14MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/001 First steps in Python.mp4 14MB ~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/002 Gaussian elimination illustration.mp4 14MB ~Get Your Files Here !/01 - Introduction/001 Introduction.mp4 14MB ~Get Your Files Here !/03 - Linear Algebra/004 Matrix vector multiplication.mp4 13MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/013 What are nested loops.mp4 13MB ~Get Your Files Here !/06 - #1 Challenge - Portfolio Optimization/001 Portfolio optimization introduction.mp4 13MB ~Get Your Files Here !/13 - Differential Equations/002 Euler's method introduction.mp4 13MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/001 What is object oriented programming (OOP).mp4 13MB ~Get Your Files Here !/03 - Linear Algebra/001 Matrix multiplication introduction.mp4 12MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/010 ADAM optimizer introduction.mp4 12MB ~Get Your Files Here !/10 - Root Finding/001 Root of functions introduction.mp4 12MB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/007 What are the problems with the random surfer model.mp4 12MB ~Get Your Files Here !/17 - Appendix #2 - Functions/005 Returning multiple values.mp4 12MB ~Get Your Files Here !/11 - Numerical Integration/006 Simpson's method introduction.mp4 12MB ~Get Your Files Here !/11 - Numerical Integration/001 Integration introduction.mp4 11MB ~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/002 Eigenvalues and eigenvectors implementation.mp4 11MB ~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/003 Applications of eigenvectors in machine learning.mp4 11MB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/002 Class and objects basics.mp4 10MB ~Get Your Files Here !/21 - Appendix #6 - Pandas/002 First steps.mp4 10MB ~Get Your Files Here !/10 - Root Finding/002 Bisection method introduction.mp4 10MB ~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/002 Precision and accuracy.mp4 9MB ~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/004 Gaussian elimination and singular matrixes.mp4 9MB ~Get Your Files Here !/09 - Interpolation/005 Applications of interpolation.mp4 9MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/016 Calculating Fibonacci-numbers.mp4 8MB ~Get Your Files Here !/17 - Appendix #2 - Functions/004 Returning values.mp4 8MB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/003 Booleans.mp4 7MB ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/numerical_methods.pptx 3MB ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/house_prices.csv 2MB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/005 Stochastic gradient descent implementation I_en.vtt 24KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/008 ADAGrad implementation_en.vtt 14KB ~Get Your Files Here !/13 - Differential Equations/004 Euler's method example - pendulum_en.vtt 13KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/001 How to measure the running time of algorithms_en.vtt 13KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/004 Stochastic gradient descent introduction_en.vtt 12KB ~Get Your Files Here !/17 - Appendix #2 - Functions/003 Positional arguments and keyword arguments_en.vtt 12KB ~Get Your Files Here !/05 - Gauss Elimination Implementation/001 Gaussian elimination implementation I_en.vtt 12KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/017 Sorting_en.vtt 11KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/002 Gradient descent implementation_en.vtt 11KB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/004 PageRank algorithm example_en.vtt 11KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/005 DataFrame operations_en.vtt 11KB ~Get Your Files Here !/09 - Interpolation/001 What is interpolation_en.vtt 11KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/015 Dictionaries in Python_en.vtt 11KB ~Get Your Files Here !/20 - Appendix #5 - NumPy/003 Dimension of arrays_en.vtt 11KB ~Get Your Files Here !/17 - Appendix #2 - Functions/008 What is recursion_en.vtt 11KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/012 What are linked list data structures_en.vtt 10KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/011 ADAM optimizer implementation_en.vtt 10KB ~Get Your Files Here !/13 - Differential Equations/001 How to deal with differential equations_en.vtt 10KB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/005 Matrix representation of the problem_en.vtt 10KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/014 Hashing and O(1) running time complexity_en.vtt 10KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/016 Sets in Python_en.vtt 10KB ~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/002 Monte-Carlo integral implementation I_en.vtt 10KB ~Get Your Files Here !/20 - Appendix #5 - NumPy/004 Indexes and slicing_en.vtt 9KB ~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/001 Floating point numbers_en.vtt 9KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/013 Comparing objects - overriding functions_en.vtt 9KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/009 How to use multiple conditions_en.vtt 9KB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/008 PageRank algorithm - the final formula_en.vtt 9KB ~Get Your Files Here !/20 - Appendix #5 - NumPy/006 Reshape_en.vtt 9KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/004 Strings_en.vtt 9KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/006 Lists in Python - advanced operations_en.vtt 9KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/009 Data filtering_en.vtt 9KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/004 What are array data structures II_en.vtt 9KB ~Get Your Files Here !/20 - Appendix #5 - NumPy/002 Creating and updating arrays_en.vtt 8KB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/002 Crawling the web with breadth-first search_en.vtt 8KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/003 Series_en.vtt 8KB ~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/001 What is the Monte-Carlo method_en.vtt 8KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/003 What are array data structures I_en.vtt 8KB ~Get Your Files Here !/05 - Gauss Elimination Implementation/002 Gaussian elimination implementation II_en.vtt 8KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/010 Using the apply() function_en.vtt 8KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/001 What is gradient descent_en.vtt 8KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/001 What is Pandas_en.vtt 8KB ~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/002 Gaussian elimination illustration_en.vtt 8KB ~Get Your Files Here !/11 - Numerical Integration/004 Trapezoidal integral introduction_en.vtt 8KB ~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/004 Speed consideration - C, Java and Python_en.vtt 8KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/007 What is ADAGrad_en.vtt 8KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/012 What is vectorization_en.vtt 8KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/005 String slicing_en.vtt 7KB ~Get Your Files Here !/20 - Appendix #5 - NumPy/007 Stacking and merging arrays_en.vtt 7KB ~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/003 What is pivoting_en.vtt 7KB ~Get Your Files Here !/09 - Interpolation/003 Interpolation implementation I_en.vtt 7KB ~Get Your Files Here !/13 - Differential Equations/002 Euler's method introduction_en.vtt 7KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/011 Loops - for loop_en.vtt 7KB ~Get Your Files Here !/13 - Differential Equations/007 Runge-Kutta method example I_en.vtt 7KB ~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/001 What is Gaussian elimination_en.vtt 7KB ~Get Your Files Here !/11 - Numerical Integration/003 Rectangle method implementation_en.vtt 7KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/003 Using the constructor_en.vtt 7KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/011 Modules_en.vtt 7KB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/003 The original formula_en.vtt 7KB ~Get Your Files Here !/09 - Interpolation/002 Interpolation illustration_en.vtt 7KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/008 Operations_en.vtt 7KB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/001 Graph representation of the WWW_en.vtt 7KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/007 Reading CSV and text files_en.vtt 6KB ~Get Your Files Here !/10 - Root Finding/003 Bisection method implementation_en.vtt 6KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/001 First steps in Python_en.vtt 6KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/005 Lists in Python_en.vtt 6KB ~Get Your Files Here !/03 - Linear Algebra/002 Matrix multiplication implementation_en.vtt 6KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/006 Stochastic gradient descent implementation II_en.vtt 6KB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/009 Power method_en.vtt 6KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/013 Doubly linked list implementation in Python_en.vtt 6KB ~Get Your Files Here !/17 - Appendix #2 - Functions/002 Defining functions_en.vtt 6KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/007 Lists in Python - list comprehension_en.vtt 6KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/015 Break and continue_en.vtt 6KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/004 DataFrames_en.vtt 6KB ~Get Your Files Here !/13 - Differential Equations/003 Euler's method example_en.vtt 6KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/010 Polymorphism and abstraction example_en.vtt 6KB ~Get Your Files Here !/11 - Numerical Integration/007 Simpson's method implementation_en.vtt 6KB ~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/001 What are eigenvalues and eigenvectors_en.vtt 6KB ~Get Your Files Here !/11 - Numerical Integration/002 Rectangle method introduction_en.vtt 6KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/007 Operators_en.vtt 6KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/013 Vectorization example I_en.vtt 6KB ~Get Your Files Here !/17 - Appendix #2 - Functions/006 Yield operator_en.vtt 6KB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/006 The random surfer model_en.vtt 6KB ~Get Your Files Here !/11 - Numerical Integration/006 Simpson's method introduction_en.vtt 6KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/002 What are the basic data types_en.vtt 6KB ~Get Your Files Here !/03 - Linear Algebra/003 Running time analysis of matrix multiplication_en.vtt 6KB ~Get Your Files Here !/09 - Interpolation/004 Interpolation implementation II_en.vtt 5KB ~Get Your Files Here !/11 - Numerical Integration/005 Trapezoidal integral implementation_en.vtt 5KB ~Get Your Files Here !/10 - Root Finding/004 Newton method introduction_en.vtt 5KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/011 Mutability and immutability_en.vtt 5KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/009 What is polymorphism_en.vtt 5KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/010 ADAM optimizer introduction_en.vtt 5KB ~Get Your Files Here !/17 - Appendix #2 - Functions/001 What are functions_en.vtt 5KB ~Get Your Files Here !/03 - Linear Algebra/006 Lists and NumPy arrays_en.vtt 5KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/005 Private variables and name mangling_en.vtt 5KB ~Get Your Files Here !/03 - Linear Algebra/001 Matrix multiplication introduction_en.vtt 5KB ~Get Your Files Here !/13 - Differential Equations/006 Runge-Kutta method introduction_en.vtt 5KB ~Get Your Files Here !/20 - Appendix #5 - NumPy/001 What is the key advantage of NumPy_en.vtt 5KB ~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/003 Monte-Carlo integral implementation II_en.vtt 5KB ~Get Your Files Here !/20 - Appendix #5 - NumPy/005 Types_en.vtt 5KB ~Get Your Files Here !/17 - Appendix #2 - Functions/007 What are the most relevant built-in functions_en.vtt 5KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/007 The super keyword_en.vtt 5KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/006 Speed comparison - DataFrame operations_en.vtt 5KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/004 Class variables and instance variables_en.vtt 5KB ~Get Your Files Here !/13 - Differential Equations/008 Runge-Kutta method example II_en.vtt 5KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/012 Loops - while loop_en.vtt 5KB ~Get Your Files Here !/03 - Linear Algebra/005 Inner product_en.vtt 5KB ~Get Your Files Here !/10 - Root Finding/002 Bisection method introduction_en.vtt 5KB ~Get Your Files Here !/17 - Appendix #2 - Functions/009 Local vs global variables_en.vtt 5KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/003 Gradient descent with momentum_en.vtt 5KB ~Get Your Files Here !/10 - Root Finding/005 Newton method implementation_en.vtt 5KB ~Get Your Files Here !/13 - Differential Equations/005 Euler's method example - pendulum with drag_en.vtt 5KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/006 Type casting_en.vtt 5KB ~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/003 Rounding errors_en.vtt 5KB ~Get Your Files Here !/03 - Linear Algebra/004 Matrix vector multiplication_en.vtt 5KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/008 Conditional statements_en.vtt 5KB ~Get Your Files Here !/03 - Linear Algebra/007 Matrix operations with NumPy_en.vtt 5KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/014 Enumerate_en.vtt 4KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/010 What are tuples_en.vtt 4KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/009 What is RMSProp_en.vtt 4KB ~Get Your Files Here !/20 - Appendix #5 - NumPy/008 Filter_en.vtt 4KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/006 What is inheritance in OOP_en.vtt 4KB ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/007 What are the problems with the random surfer model_en.vtt 4KB ~Get Your Files Here !/10 - Root Finding/001 Root of functions introduction_en.vtt 4KB ~Get Your Files Here !/06 - #1 Challenge - Portfolio Optimization/001 Portfolio optimization introduction_en.vtt 4KB ~Get Your Files Here !/17 - Appendix #2 - Functions/010 The __main__ function_en.vtt 4KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/014 Vectorization example II_en.vtt 4KB ~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/004 Gaussian elimination and singular matrixes_en.vtt 4KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/002 Data structures introduction_en.vtt 4KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/010 Logical operators_en.vtt 4KB ~Get Your Files Here !/11 - Numerical Integration/001 Integration introduction_en.vtt 4KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/012 The __str__ function_en.vtt 4KB ~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/002 Eigenvalues and eigenvectors implementation_en.vtt 4KB ~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/002 Precision and accuracy_en.vtt 3KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/002 First steps_en.vtt 3KB ~Get Your Files Here !/17 - Appendix #2 - Functions/005 Returning multiple values_en.vtt 3KB ~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/004 Applications of Monte-Carlo simulations in finance_en.vtt 3KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/002 Class and objects basics_en.vtt 3KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/013 What are nested loops_en.vtt 3KB ~Get Your Files Here !/06 - #1 Challenge - Portfolio Optimization/002 Portfolio optimization implementation_en.vtt 3KB ~Get Your Files Here !/21 - Appendix #6 - Pandas/011 Speed comparison - loops and apply()_en.vtt 3KB ~Get Your Files Here !/09 - Interpolation/005 Applications of interpolation_en.vtt 3KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/016 Calculating Fibonacci-numbers_en.vtt 3KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/001 What is object oriented programming (OOP)_en.vtt 3KB ~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/008 Function (method) override_en.vtt 3KB ~Get Your Files Here !/17 - Appendix #2 - Functions/004 Returning values_en.vtt 3KB ~Get Your Files Here !/01 - Introduction/001 Introduction_en.vtt 2KB ~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/003 Applications of eigenvectors in machine learning_en.vtt 2KB ~Get Your Files Here !/16 - Appendix #1 - Python Basics/003 Booleans_en.vtt 2KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/006 StochasticGradientDescentRegression.py 2KB ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/StochasticGradientDescentRegression.py 2KB ~Get Your Files Here !/09 - Interpolation/004 LagrangeInterpolation.py 2KB ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/LagrangeInterpolation.py 2KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/005 StochasticGradientDescent.py 2KB ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/StochasticGradientDescent.py 2KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/008 GradientDescentAdaGrad.py 2KB ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/GradientDescentAdaGrad.py 2KB ~Get Your Files Here !/20 - Appendix #5 - NumPy/009 Running time comparison arrays and lists.html 1KB ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/GradientDescentMomentum.py 1KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/002 GradientDescent.py 1KB ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/GradientDescent.py 1KB ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/009 Measuring running time of lists.html 1KB ~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/002 MonteCarloIntegral.py 1KB ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/MonteCarloIntegral.py 1KB ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/011 ADAM.py 1KB ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/ADAM.py 1KB ~Get Your Files Here !/05 - Gauss Elimination Implementation/002 GaussElimination.py 838B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/GaussElimination.py 838B ~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/003 MonteCarloIntegral2.py 676B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/MonteCarloIntegral2.py 676B ~Get Your Files Here !/13 - Differential Equations/008 RungeKuttaExample2.py 663B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/RungeKuttaExample2.py 663B ~Get Your Files Here !/13 - Differential Equations/007 RungeKuttaExample1.py 648B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/RungeKuttaExample1.py 648B ~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/008 (!!!) Python lists and arrays.html 628B ~Get Your Files Here !/11 - Numerical Integration/007 SimpsonMethod.py 511B ~Get Your Files Here !/03 - Linear Algebra/002 MatrixMultiplication.py 496B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/MatrixMultiplication.py 496B ~Get Your Files Here !/11 - Numerical Integration/005 TrapezoidalIntegral.py 468B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/TrapezoidalIntegral.py 468B ~Get Your Files Here !/13 - Differential Equations/003 EulerMethodExample1.py 449B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/EulerMethodExample1.py 449B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/EulerMethodExample3.py 449B ~Get Your Files Here !/15 - ### APPENDIX - PYTHON PROGRAMMING CRASH COURSE ###/001 Python crash course introduction.html 441B ~Get Your Files Here !/03 - Linear Algebra/004 MatrixVectorMultiplication.py 423B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/MatrixVectorMultiplication.py 423B ~Get Your Files Here !/13 - Differential Equations/004 EulerMethodExample2.py 421B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/EulerMethodExample2.py 421B ~Get Your Files Here !/03 - Linear Algebra/005 InnerProduct.py 386B ~Get Your Files Here !/Bonus Resources.txt 386B ~Get Your Files Here !/11 - Numerical Integration/003 RectangleIntegral.py 376B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/RectangleIntegral.py 376B ~Get Your Files Here !/10 - Root Finding/003 BisectionMethod.py 360B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/BisectionMethod.py 360B ~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/005 Mathematical formulation of Gaussian elimination.html 345B ~Get Your Files Here !/10 - Root Finding/005 NewtonRaphsonMethod.py 294B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/NewtonRaphsonMethod.py 294B ~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/012 Mathematical formulation of optimization algorithms in machine learning.html 275B ~Get Your Files Here !/10 - Root Finding/006 Mathematical formulation of root finding.html 271B ~Get Your Files Here !/09 - Interpolation/006 Mathematical formulation of interpolation.html 265B ~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/004 Mathematical formulation of eigenvectors.html 261B ~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/010 Original scientific paper of PageRank algorithm.html 254B ~Get Your Files Here !/13 - Differential Equations/009 Mathematical formulation of numerical differentiation.html 251B ~Get Your Files Here !/11 - Numerical Integration/008 Mathematical formulation of numerical integration.html 245B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/NumPyOperations.py 224B Get Bonus Downloads Here.url 182B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/EigenvectorExample.py 117B ~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/001 Course material.html 58B