[] Udemy - The Complete Neural Networks Bootcamp Theory, Applications 收录时间:2022-02-04 09:32:36 文件大小:19GB 下载次数:1 最近下载:2022-02-04 09:32:36 磁力链接: magnet:?xt=urn:btih:43f148d4ac20cc5bf65b0efeac89ffd575208065 立即下载 复制链接 文件列表 30. Practical Sequence Modelling in PyTorch Chatbot Application/3. Defining the Encoder.mp4 404MB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/5. Training the Network.mp4 333MB 21. Autoencoders and Variational Autoencoders/6. Loss Function Derivation for VAE.mp4 319MB 30. Practical Sequence Modelling in PyTorch Chatbot Application/5. Designing the Attention Model.mp4 260MB 21. Autoencoders and Variational Autoencoders/5. Probability Distributions Recap.mp4 259MB 14. Practical Convolutional Networks in PyTorch - Image Classification/3. Building the CNN.mp4 251MB 18. Transfer Learning in PyTorch - Image Classification/1. Data Augmentation.mp4 225MB 8. Introduction to PyTorch/9. Loss Functions in PyTorch.mp4 223MB 33. Build a Chatbot with Transformers/16. Loss with Label Smoothing.mp4 215MB 27. Practical Recurrent Networks in PyTorch/6. Generating Text.mp4 178MB 18. Transfer Learning in PyTorch - Image Classification/2. Loading the Dataset.mp4 177MB 30. Practical Sequence Modelling in PyTorch Chatbot Application/7. Designing the Decoder Part 2.mp4 176MB 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/4. Part 4 Building the Network.mp4 171MB 34. Universal Transformers/2. Practical Universal Transformers Modifying the Transformers code.mp4 161MB 31. Practical Sequence Modelling in PyTorch Image Captioning/10. Train Function.mp4 159MB 1. How Neural Networks and Backpropagation Works/1. What Can Deep Learning Do.mp4 156MB 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/5. Part 5 Training the Network.mp4 156MB 27. Practical Recurrent Networks in PyTorch/5. Training the Network.mp4 152MB 15. CNN Architectures/3. Residual Networks Part 2.mp4 151MB 11. Implementing a Neural Network from Scratch with Numpy/7. Backpropagation.mp4 148MB 8. Introduction to PyTorch/4. How PyTorch Works.mp4 147MB 16. Practical Residual Networks in PyTorch/4. Practical ResNet Part 4.mp4 143MB 19. Convolutional Networks Visualization/2. Processing the Model.mp4 142MB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/2. Importing and Defining Parameters.mp4 142MB 30. Practical Sequence Modelling in PyTorch Chatbot Application/6. Designing the Decoder Part 1.mp4 139MB 36. BERT/5. Exploring Transformers.mp4 137MB 31. Practical Sequence Modelling in PyTorch Image Captioning/4. Constructing the Dataset Part 1.mp4 136MB 33. Build a Chatbot with Transformers/2. Dataset Preprocessing Part 2.mp4 135MB 20. YOLO Object Detection (Theory)/1. YOLO Theory Part 1.mp4 134MB 19. Convolutional Networks Visualization/3. Visualizing the Feature Maps.mp4 133MB 14. Practical Convolutional Networks in PyTorch - Image Classification/6. Training the CNN.mp4 131MB 31. Practical Sequence Modelling in PyTorch Image Captioning/9. Creating the Decoder Part 3.mp4 131MB 24. Practical Neural Style Transfer in PyTorch/4. NST Practical Part 4.mp4 131MB 28. Saving and Loading Models/1. Saving and Loading Part 1.mp4 131MB 24. Practical Neural Style Transfer in PyTorch/2. NST Practical Part 2.mp4 128MB 2. Loss Functions/10. Triplet Ranking Loss.mp4 126MB 20. YOLO Object Detection (Theory)/3. YOLO Theory Part 3.mp4 124MB 20. YOLO Object Detection (Theory)/6. YOLO Theory Part 6.mp4 124MB 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/1. Part 1 Data Preprocessing.mp4 124MB 33. Build a Chatbot with Transformers/10. MultiHead Attention Implementation Part 3.mp4 123MB 15. CNN Architectures/2. Residual Networks Part 1.mp4 122MB 18. Transfer Learning in PyTorch - Image Classification/6. Testing and Visualizing the results.mp4 118MB 31. Practical Sequence Modelling in PyTorch Image Captioning/7. Creating the Decoder Part 1.mp4 118MB 33. Build a Chatbot with Transformers/14. Transformer.mp4 117MB 34. Universal Transformers/3. Transformers for other tasks.mp4 113MB 27. Practical Recurrent Networks in PyTorch/4. Creating the Network.mp4 112MB 25. Recurrent Neural Networks/7. LSTMs.mp4 112MB 1. How Neural Networks and Backpropagation Works/4. The Perceptron.mp4 111MB 33. Build a Chatbot with Transformers/19. Evaluation Function.mp4 110MB 7. Weight Initialization/3. Xavier Initialization.mp4 110MB 27. Practical Recurrent Networks in PyTorch/2. Processing the Text.mp4 109MB 37. Vision Transformers/3. Vision Transformer Part 3.mp4 106MB 24. Practical Neural Style Transfer in PyTorch/3. NST Practical Part 3.mp4 106MB 20. YOLO Object Detection (Theory)/5. YOLO Theory Part 5.mp4 105MB 31. Practical Sequence Modelling in PyTorch Image Captioning/11. Defining Hyperparameters.mp4 105MB 22. Practical Variational Autoencoders in PyTorch/2. Practical VAE Part 2.mp4 104MB 16. Practical Residual Networks in PyTorch/3. Practical ResNet Part 3.mp4 103MB 18. Transfer Learning in PyTorch - Image Classification/4. Understanding the data.mp4 102MB 22. Practical Variational Autoencoders in PyTorch/1. Practical VAE Part 1.mp4 101MB 33. Build a Chatbot with Transformers/18. Training Function.mp4 101MB 4. Regularization and Normalization/6. Batch Normalization.mp4 100MB 13. Convolutional Neural Networks/13. DropBlock Dropout in CNNs.mp4 100MB 8. Introduction to PyTorch/3. Installing PyTorch and an Introduction.mp4 99MB 11. Implementing a Neural Network from Scratch with Numpy/6. Backpropagation Equations.mp4 99MB 31. Practical Sequence Modelling in PyTorch Image Captioning/8. Creating the Decoder Part 2.mp4 97MB 18. Transfer Learning in PyTorch - Image Classification/3. Modifying the Network.mp4 97MB 28. Saving and Loading Models/2. Saving and Loading Part 2.mp4 97MB 32. Transformers/3. Positional Encoding.mp4 96MB 15. CNN Architectures/5. Densely Connected Networks.mp4 95MB 33. Build a Chatbot with Transformers/20. Main Function and User Evaluation.mp4 93MB 22. Practical Variational Autoencoders in PyTorch/3. Practical VAE Part 3.mp4 93MB 30. Practical Sequence Modelling in PyTorch Chatbot Application/2. Understanding the Encoder.mp4 93MB 33. Build a Chatbot with Transformers/5. Dataset Preprocessing Part 5.mp4 92MB 31. Practical Sequence Modelling in PyTorch Image Captioning/12. Evaluation Function.mp4 91MB 38. GPT/1. GPT Part 1.mp4 89MB 8. Introduction to PyTorch/5. Torch Tensors - Part 1.mp4 87MB 33. Build a Chatbot with Transformers/12. Encoder Layer.mp4 87MB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/3. Defining the Network Class.mp4 86MB 16. Practical Residual Networks in PyTorch/2. Practical ResNet Part 2.mp4 86MB 5. Optimization/13. AMSGrad.mp4 86MB 37. Vision Transformers/1. Vision Transformer Part 1.mp4 85MB 21. Autoencoders and Variational Autoencoders/7. Deep Fake.mp4 85MB 11. Implementing a Neural Network from Scratch with Numpy/3. Forward Propagation.mp4 85MB 31. Practical Sequence Modelling in PyTorch Image Captioning/6. Creating the Encoder.mp4 85MB 33. Build a Chatbot with Transformers/1. Dataset Preprocessing Part 1.mp4 83MB 29. Sequence Modelling/1. Sequence Modeling.mp4 82MB 33. Build a Chatbot with Transformers/7. Embeddings.mp4 81MB 13. Convolutional Neural Networks/8. Activation, Pooling and FC.mp4 81MB 20. YOLO Object Detection (Theory)/2. YOLO Theory Part 2.mp4 81MB 33. Build a Chatbot with Transformers/3. Dataset Preprocessing Part 3.mp4 80MB 5. Optimization/9. Adam Optimization.mp4 78MB 2. Loss Functions/2. L1 Loss (MAE).mp4 77MB 20. YOLO Object Detection (Theory)/8. YOLO Theory Part 8.mp4 77MB 8. Introduction to PyTorch/8. Automatic Differentiation.mp4 76MB 33. Build a Chatbot with Transformers/6. Data Loading and Masking.mp4 76MB 5. Optimization/11. Weight Decay.mp4 76MB 33. Build a Chatbot with Transformers/15. AdamWarmup.mp4 75MB 32. Transformers/15. Dropout.mp4 75MB 4. Regularization and Normalization/3. Dropout.mp4 75MB 8. Introduction to PyTorch/7. Numpy Bridge, Tensor Concatenation and Adding Dimensions.mp4 75MB 30. Practical Sequence Modelling in PyTorch Chatbot Application/1. Introduction.mp4 74MB 19. Convolutional Networks Visualization/1. Data and the Model.mp4 74MB 31. Practical Sequence Modelling in PyTorch Image Captioning/3. Accuracy Calculation.mp4 74MB 26. Word Embeddings/1. What are Word Embeddings.mp4 73MB 10. Visualize the Learning Process/5. Visualize Learning Part 5.mp4 72MB 16. Practical Residual Networks in PyTorch/1. Practical ResNet Part 1.mp4 72MB 17. Transposed Convolutions/2. Convolution Operation as Matrix Multiplication.mp4 71MB 11. Implementing a Neural Network from Scratch with Numpy/1. The Dataset and Hyperparameters.mp4 71MB 21. Autoencoders and Variational Autoencoders/4. Variational Autoencoders.mp4 70MB 20. YOLO Object Detection (Theory)/7. YOLO Theory Part 7.mp4 70MB 27. Practical Recurrent Networks in PyTorch/3. Defining and Visualizing the Parameters.mp4 70MB 6. Hyperparameter Tuning and Learning Rate Scheduling/3. Cyclic Learning Rate.mp4 69MB 23. Neural Style Transfer/3. NST Theory Part 3.mp4 69MB 11. Implementing a Neural Network from Scratch with Numpy/4. Loss Function.mp4 68MB 8. Introduction to PyTorch/6. Torch Tensors - Part 2.mp4 68MB 2. Loss Functions/9. Hinge Loss.mp4 67MB 25. Recurrent Neural Networks/6. Vanishing and Exploding Gradient Problem.mp4 67MB 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/3. Part 3 Creating and Loading the Dataset.mp4 66MB 8. Introduction to PyTorch/10. Weight Initialization in PyTorch.mp4 66MB 32. Transformers/2. Input Embeddings.mp4 66MB 10. Visualize the Learning Process/6. Visualize Learning Part 6.mp4 64MB 24. Practical Neural Style Transfer in PyTorch/1. NST Practical Part 1.mp4 64MB 6. Hyperparameter Tuning and Learning Rate Scheduling/2. Step Learning Rate Decay.mp4 63MB 2. Loss Functions/8. Contrastive Loss.mp4 63MB 33. Build a Chatbot with Transformers/13. Decoder Layer.mp4 62MB 25. Recurrent Neural Networks/4. Backpropagation Through Time.mp4 62MB 14. Practical Convolutional Networks in PyTorch - Image Classification/2. Visualizing and Loading the Dataset.mp4 61MB 15. CNN Architectures/7. Seperable Convolutions.mp4 61MB 33. Build a Chatbot with Transformers/8. MultiHead Attention Implementation Part 1.mp4 60MB 7. Weight Initialization/2. What happens when all weights are initialized to the same value.mp4 60MB 27. Practical Recurrent Networks in PyTorch/1. Creating the Dictionary.mp4 60MB 11. Implementing a Neural Network from Scratch with Numpy/8. Initializing the Network.mp4 59MB 32. Transformers/4. MultiHead Attention Part 1.mp4 58MB 20. YOLO Object Detection (Theory)/12. YOLO Theory Part 12.mp4 58MB 31. Practical Sequence Modelling in PyTorch Image Captioning/5. Constructing the Dataset Part 2.mp4 57MB 35. Google Colab and Gradient Accumulation/2. Gradient Accumulation.mp4 57MB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/4. Creating the network class and the network functions.mp4 56MB 14. Practical Convolutional Networks in PyTorch - Image Classification/10. Classifying your own Handwritten images.mp4 56MB 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/2. Part 2 Data Normalization.mp4 55MB 8. Introduction to PyTorch/2. Computation Graphs and Deep Learning Frameworks.mp4 55MB 26. Word Embeddings/5. Word Embeddings in PyTorch.mp4 53MB 20. YOLO Object Detection (Theory)/11. YOLO Theory Part 11.mp4 53MB 28. Saving and Loading Models/3. Saving and Loading Part 3.mp4 53MB 14. Practical Convolutional Networks in PyTorch - Image Classification/1. Loading and Normalizing the Dataset.mp4 53MB 23. Neural Style Transfer/1. NST Theory Part 1.mp4 53MB 5. Optimization/12. Decoupling Weight Decay.mp4 52MB 1. How Neural Networks and Backpropagation Works/6. The Forward Propagation.mp4 52MB 13. Convolutional Neural Networks/3. Filters and Features.mp4 52MB 25. Recurrent Neural Networks/2. Vanilla RNNs.mp4 52MB 33. Build a Chatbot with Transformers/9. MultiHead Attention Implementation Part 2.mp4 51MB 38. GPT/5. Technical Details of GPT.mp4 51MB 36. BERT/4. Fine-tuning BERT.mp4 51MB 31. Practical Sequence Modelling in PyTorch Image Captioning/1. Implementation Details.mp4 50MB 18. Transfer Learning in PyTorch - Image Classification/5. Finetuning the Network.mp4 50MB 1. How Neural Networks and Backpropagation Works/3. The Essence of Neural Networks.mp4 50MB 5. Optimization/1. Batch Gradient Descent.mp4 49MB 11. Implementing a Neural Network from Scratch with Numpy/9. Training the Model.mp4 47MB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/6. Testing the Network.mp4 47MB 32. Transformers/1. Introduction to Transformers.mp4 47MB 13. Convolutional Neural Networks/11. CNN Characteristics.mp4 46MB 32. Transformers/5. MultiHead Attention Part 2.mp4 46MB 4. Regularization and Normalization/7. Layer Normalization.mp4 45MB 38. GPT/2. GPT Part 2.mp4 45MB 14. Practical Convolutional Networks in PyTorch - Image Classification/8. Plotting and Putting into Action.mp4 45MB 2. Loss Functions/4. Binary Cross Entropy Loss.mp4 45MB 24. Practical Neural Style Transfer in PyTorch/5. Fast Neural Style Transfer.mp4 45MB 2. Loss Functions/6. Softmax Function.mp4 45MB 15. CNN Architectures/1. CNN Architectures Part 1.mp4 44MB 33. Build a Chatbot with Transformers/17. Defining the Model.mp4 44MB 38. GPT/3. Zero-Shot Predictions with GPT.mp4 43MB 5. Optimization/5. Exponentially Weighted Average Implementation.mp4 43MB 33. Build a Chatbot with Transformers/11. Feed Forward Implementation.mp4 43MB 36. BERT/3. Next Sentence Prediction.mp4 43MB 21. Autoencoders and Variational Autoencoders/1. Autoencoders.mp4 42MB 1. How Neural Networks and Backpropagation Works/2. The Rise of Deep Learning.mp4 42MB 31. Practical Sequence Modelling in PyTorch Image Captioning/2. Utility Functions.mp4 41MB 1. How Neural Networks and Backpropagation Works/5. Gradient Descent.mp4 41MB 29. Sequence Modelling/4. How Attention Mechanisms Work.mp4 40MB 15. CNN Architectures/6. Squeeze-Excite Networks.mp4 40MB 38. GPT/4. Byte-Pair Encoding.mp4 39MB 5. Optimization/8. RMSProp.mp4 39MB 3. Activation Functions/8. Mish Activation.mp4 38MB 13. Convolutional Neural Networks/1. Prerequisite Filters.mp4 36MB 17. Transposed Convolutions/3. Transposed Convolutions.mp4 36MB 14. Practical Convolutional Networks in PyTorch - Image Classification/7. Testing the CNN.mp4 36MB 37. Vision Transformers/2. Vision Transformer Part 2.mp4 35MB 6. Hyperparameter Tuning and Learning Rate Scheduling/4. Cosine Annealing with Warm Restarts.mp4 35MB 23. Neural Style Transfer/2. NST Theory Part 2.mp4 35MB 29. Sequence Modelling/2. Image Captioning.mp4 35MB 36. BERT/1. What is BERT and its structure.mp4 35MB 31. Practical Sequence Modelling in PyTorch Image Captioning/14. Results.mp4 34MB 4. Regularization and Normalization/2. L1 and L2 Regularization.mp4 33MB 35. Google Colab and Gradient Accumulation/1. Running your models on Google Colab.mp4 33MB 32. Transformers/12. Cross Entropy Loss.mp4 33MB 10. Visualize the Learning Process/7. Neural Networks Playground.mp4 33MB 33. Build a Chatbot with Transformers/21. Action.mp4 32MB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/1. Code Details.mp4 32MB 17. Transposed Convolutions/1. Introduction to Transposed Convolutions.mp4 31MB 5. Optimization/6. Bias Correction in Exponentially Weighted Averages.mp4 31MB 38. GPT/6. Playing with HuggingFace models.mp4 30MB 21. Autoencoders and Variational Autoencoders/2. Denoising Autoencoders.mp4 30MB 13. Convolutional Neural Networks/5. More on Convolutions.mp4 30MB 1. How Neural Networks and Backpropagation Works/7. Backpropagation Part 1.mp4 29MB 15. CNN Architectures/8. Transfer Learning.mp4 29MB 30. Practical Sequence Modelling in PyTorch Chatbot Application/4. Understanding Pack Padded Sequence.mp4 29MB 32. Transformers/16. Learning Rate Warmup.mp4 29MB 2. Loss Functions/3. Huber Loss.mp4 29MB 32. Transformers/7. Residual Learning.mp4 28MB 13. Convolutional Neural Networks/7. A Tool for Convolution Visualization.mp4 28MB 1. How Neural Networks and Backpropagation Works/8. Backpropagation Part 2.mp4 28MB 11. Implementing a Neural Network from Scratch with Numpy/5. Prediction.mp4 28MB 10. Visualize the Learning Process/3. Visualize Learning Part 3.mp4 27MB 13. Convolutional Neural Networks/14. Softmax with Temperature.mp4 27MB 5. Optimization/7. Momentum.mp4 27MB 32. Transformers/10. Masked MultiHead Attention.mp4 27MB 3. Activation Functions/6. Gated Linear Units (GLU).mp4 27MB 4. Regularization and Normalization/8. Group Normalization.mp4 26MB 4. Regularization and Normalization/1. Overfitting.mp4 26MB 14. Practical Convolutional Networks in PyTorch - Image Classification/5. Understanding the Propagation.mp4 26MB 25. Recurrent Neural Networks/9. GRUs.mp4 26MB 20. YOLO Object Detection (Theory)/4. YOLO Theory Part 4.mp4 26MB 2. Loss Functions/7. KL divergence Loss.mp4 25MB 20. YOLO Object Detection (Theory)/10. YOLO Theory Part 10.mp4 25MB 13. Convolutional Neural Networks/2. Introduction to Convolutional Networks and the need for them.mp4 25MB 6. Hyperparameter Tuning and Learning Rate Scheduling/5. Batch Size vs Learning Rate.mp4 25MB 2. Loss Functions/5. Cross Entropy Loss.mp4 25MB 10. Visualize the Learning Process/1. Visualize Learning Part 1.mp4 24MB 32. Transformers/13. KL Divergence Loss.mp4 24MB 11. Implementing a Neural Network from Scratch with Numpy/2. Understanding the Implementation.mp4 23MB 36. BERT/2. Masked Language Modelling.mp4 23MB 5. Optimization/4. Exponentially Weighted Average Intuition.mp4 23MB 3. Activation Functions/1. Why we need activation functions.mp4 22MB 34. Universal Transformers/1. Universal Transformers.mp4 22MB 32. Transformers/8. Layer Normalization.mp4 22MB 30. Practical Sequence Modelling in PyTorch Chatbot Application/8. Teacher Forcing.mp4 22MB 25. Recurrent Neural Networks/10. CNN-LSTM.mp4 21MB 13. Convolutional Neural Networks/4. Convolution over Volume Animation.mp4 21MB 3. Activation Functions/4. ReLU and PReLU.mp4 21MB 33. Build a Chatbot with Transformers/4. Dataset Preprocessing Part 4.mp4 20MB 3. Activation Functions/2. Sigmoid Activation.mp4 20MB 10. Visualize the Learning Process/4. Visualize Learning Part 4.mp4 20MB 2. Loss Functions/1. Mean Squared Error (MSE).mp4 20MB 7. Weight Initialization/1. Normal Distribution.mp4 19MB 14. Practical Convolutional Networks in PyTorch - Image Classification/4. Defining the Model.mp4 19MB 25. Recurrent Neural Networks/1. Why do we need RNNs.mp4 19MB 13. Convolutional Neural Networks/12. Regularization and Batch Normalization in CNNs.mp4 18MB 5. Optimization/2. Stochastic Gradient Descent.mp4 18MB 20. YOLO Object Detection (Theory)/9. YOLO Theory Part 9.mp4 18MB 6. Hyperparameter Tuning and Learning Rate Scheduling/1. Introduction to Hyperparameter Tuning and Learning Rate Recap.mp4 18MB 14. Practical Convolutional Networks in PyTorch - Image Classification/9. Predicting an image.mp4 17MB 29. Sequence Modelling/3. Attention Mechanisms.mp4 16MB 32. Transformers/9. Feed Forward.mp4 16MB 13. Convolutional Neural Networks/9. CNN Visualization.mp4 15MB 25. Recurrent Neural Networks/3. Quiz Solution Discussion.mp4 15MB 25. Recurrent Neural Networks/8. Bidirectional RNNs.mp4 15MB 4. Regularization and Normalization/4. DropConnect.mp4 14MB 3. Activation Functions/3. Tanh Activation.mp4 14MB 4. Regularization and Normalization/5. Normalization.mp4 14MB 21. Autoencoders and Variational Autoencoders/3. The Problem in Autoencoders.mp4 13MB 13. Convolutional Neural Networks/10. Important formulas.mp4 13MB 15. CNN Architectures/4. CNN Architectures Part 2.mp4 13MB 7. Weight Initialization/4. He Norm Initialization.mp4 13MB 32. Transformers/14. Label Smoothing.mp4 13MB 3. Activation Functions/7. Swish Activation.mp4 13MB 31. Practical Sequence Modelling in PyTorch Image Captioning/13. Training.mp4 13MB 10. Visualize the Learning Process/2. Visualize Learning Part 2.mp4 12MB 26. Word Embeddings/2. Visualizing Word Embeddings.mp4 12MB 32. Transformers/11. MultiHead Attention in Decoder.mp4 11MB 26. Word Embeddings/4. Word Embeddings Models.mp4 11MB 3. Activation Functions/5. Exponentially Linear Units (ELU).mp4 11MB 5. Optimization/10. SWATS - Switching from Adam to SGD.mp4 10MB 32. Transformers/6. Concat and Linear.mp4 10MB 25. Recurrent Neural Networks/5. Stacked RNNs.mp4 8MB 5. Optimization/3. Mini-Batch Gradient Descent.mp4 7MB 13. Convolutional Neural Networks/6. Quiz Solution Discussion.mp4 6MB 26. Word Embeddings/3. Measuring Word Embeddings.mp4 6MB 8. Introduction to PyTorch/1. CODE FOR THIS COURSE.mp4 2MB 19. Convolutional Networks Visualization/dog.jpg 93KB 21. Autoencoders and Variational Autoencoders/5. Probability Distributions Recap-en_US.srt 42KB 21. Autoencoders and Variational Autoencoders/6. Loss Function Derivation for VAE-en_US.srt 37KB 8. Introduction to PyTorch/9. Loss Functions in PyTorch-en_US.srt 37KB 19. Convolutional Networks Visualization/imagenet-class-index.json 35KB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/5. Training the Network-en_US.srt 33KB 14. Practical Convolutional Networks in PyTorch - Image Classification/3. Building the CNN-en_US.srt 32KB 30. Practical Sequence Modelling in PyTorch Chatbot Application/3. Defining the Encoder-en_US.srt 31KB 25. Recurrent Neural Networks/7. LSTMs-en_US.srt 28KB 11. Implementing a Neural Network from Scratch with Numpy/7. Backpropagation-en_US.srt 28KB 22. Practical Variational Autoencoders in PyTorch/1. Practical VAE Part 1-en_US.srt 25KB 33. Build a Chatbot with Transformers/16. Loss with Label Smoothing-en_US.srt 25KB 8. Introduction to PyTorch/4. How PyTorch Works-en_US.srt 24KB 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/5. Part 5 Training the Network-en_US.srt 23KB 15. CNN Architectures/3. Residual Networks Part 2-en_US.srt 23KB 31. Practical Sequence Modelling in PyTorch Image Captioning/6. Creating the Encoder-en_US.srt 23KB 30. Practical Sequence Modelling in PyTorch Chatbot Application/7. Designing the Decoder Part 2-en_US.srt 23KB 31. Practical Sequence Modelling in PyTorch Image Captioning/7. Creating the Decoder Part 1-en_US.srt 22KB 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/4. Part 4 Building the Network-en_US.srt 22KB 31. Practical Sequence Modelling in PyTorch Image Captioning/12. Evaluation Function-en_US.srt 22KB 1. How Neural Networks and Backpropagation Works/4. The Perceptron-en_US.srt 21KB 11. Implementing a Neural Network from Scratch with Numpy/4. Loss Function-en_US.srt 21KB 14. Practical Convolutional Networks in PyTorch - Image Classification/6. Training the CNN-en_US.srt 21KB 35. Google Colab and Gradient Accumulation/2. Gradient Accumulation-en_US.srt 21KB 33. Build a Chatbot with Transformers/19. Evaluation Function-en_US.srt 21KB 31. Practical Sequence Modelling in PyTorch Image Captioning/10. Train Function-en_US.srt 21KB 30. Practical Sequence Modelling in PyTorch Chatbot Application/5. Designing the Attention Model-en_US.srt 20KB 36. BERT/5. Exploring Transformers-en_US.srt 20KB 33. Build a Chatbot with Transformers/2. Dataset Preprocessing Part 2-en_US.srt 20KB 28. Saving and Loading Models/1. Saving and Loading Part 1-en_US.srt 19KB 33. Build a Chatbot with Transformers/7. Embeddings-en_US.srt 19KB 31. Practical Sequence Modelling in PyTorch Image Captioning/11. Defining Hyperparameters-en_US.srt 19KB 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/1. Part 1 Data Preprocessing-en_US.srt 19KB 24. Practical Neural Style Transfer in PyTorch/4. NST Practical Part 4-en_US.srt 18KB 31. Practical Sequence Modelling in PyTorch Image Captioning/4. Constructing the Dataset Part 1-en_US.srt 18KB 1. How Neural Networks and Backpropagation Works/1. What Can Deep Learning Do-en_US.srt 18KB 31. Practical Sequence Modelling in PyTorch Image Captioning/2. Utility Functions-en_US.srt 18KB 30. Practical Sequence Modelling in PyTorch Chatbot Application/6. Designing the Decoder Part 1-en_US.srt 18KB 32. Transformers/3. Positional Encoding-en_US.srt 18KB 15. CNN Architectures/5. Densely Connected Networks-en_US.srt 18KB 19. Convolutional Networks Visualization/2. Processing the Model-en_US.srt 18KB 8. Introduction to PyTorch/2. Computation Graphs and Deep Learning Frameworks-en_US.srt 17KB 34. Universal Transformers/2. Practical Universal Transformers Modifying the Transformers code-en_US.srt 17KB 29. Sequence Modelling/1. Sequence Modeling-en_US.srt 17KB 2. Loss Functions/4. Binary Cross Entropy Loss-en_US.srt 17KB 31. Practical Sequence Modelling in PyTorch Image Captioning/9. Creating the Decoder Part 3-en_US.srt 17KB 37. Vision Transformers/1. Vision Transformer Part 1-en_US.srt 17KB 16. Practical Residual Networks in PyTorch/4. Practical ResNet Part 4-en_US.srt 17KB 13. Convolutional Neural Networks/8. Activation, Pooling and FC-en_US.srt 17KB 33. Build a Chatbot with Transformers/6. Data Loading and Masking-en_US.srt 17KB 2. Loss Functions/9. Hinge Loss-en_US.srt 17KB 25. Recurrent Neural Networks/4. Backpropagation Through Time-en_US.srt 17KB 2. Loss Functions/10. Triplet Ranking Loss-en_US.srt 16KB 8. Introduction to PyTorch/10. Weight Initialization in PyTorch-en_US.srt 16KB 19. Convolutional Networks Visualization/3. Visualizing the Feature Maps-en_US.srt 16KB 6. Hyperparameter Tuning and Learning Rate Scheduling/2. Step Learning Rate Decay-en_US.srt 16KB 27. Practical Recurrent Networks in PyTorch/6. Generating Text-en_US.srt 16KB 32. Transformers/12. Cross Entropy Loss-en_US.srt 16KB 20. YOLO Object Detection (Theory)/2. YOLO Theory Part 2-en_US.srt 16KB 33. Build a Chatbot with Transformers/10. MultiHead Attention Implementation Part 3-en_US.srt 16KB 16. Practical Residual Networks in PyTorch/2. Practical ResNet Part 2-en_US.srt 16KB 16. Practical Residual Networks in PyTorch/1. Practical ResNet Part 1-en_US.srt 16KB 2. Loss Functions/8. Contrastive Loss-en_US.srt 16KB 14. Practical Convolutional Networks in PyTorch - Image Classification/1. Loading and Normalizing the Dataset-en_US.srt 16KB 11. Implementing a Neural Network from Scratch with Numpy/6. Backpropagation Equations-en_US.srt 16KB 4. Regularization and Normalization/6. Batch Normalization-en_US.srt 16KB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/2. Importing and Defining Parameters-en_US.srt 16KB 31. Practical Sequence Modelling in PyTorch Image Captioning/1. Implementation Details-en_US.srt 16KB 32. Transformers/1. Introduction to Transformers-en_US.srt 16KB 11. Implementing a Neural Network from Scratch with Numpy/1. The Dataset and Hyperparameters-en_US.srt 16KB 16. Practical Residual Networks in PyTorch/3. Practical ResNet Part 3-en_US.srt 16KB 31. Practical Sequence Modelling in PyTorch Image Captioning/5. Constructing the Dataset Part 2-en_US.srt 16KB 18. Transfer Learning in PyTorch - Image Classification/1. Data Augmentation-en_US.srt 15KB 37. Vision Transformers/3. Vision Transformer Part 3-en_US.srt 15KB 13. Convolutional Neural Networks/13. DropBlock Dropout in CNNs-en_US.srt 15KB 22. Practical Variational Autoencoders in PyTorch/3. Practical VAE Part 3-en_US.srt 15KB 11. Implementing a Neural Network from Scratch with Numpy/3. Forward Propagation-en_US.srt 15KB 14. Practical Convolutional Networks in PyTorch - Image Classification/10. Classifying your own Handwritten images-en_US.srt 15KB 1. How Neural Networks and Backpropagation Works/5. Gradient Descent-en_US.srt 15KB 15. CNN Architectures/1. CNN Architectures Part 1-en_US.srt 15KB 5. Optimization/8. RMSProp-en_US.srt 15KB 8. Introduction to PyTorch/5. Torch Tensors - Part 1-en_US.srt 15KB 15. CNN Architectures/7. Seperable Convolutions-en_US.srt 15KB 8. Introduction to PyTorch/7. Numpy Bridge, Tensor Concatenation and Adding Dimensions-en_US.srt 15KB 33. Build a Chatbot with Transformers/14. Transformer-en_US.srt 15KB 31. Practical Sequence Modelling in PyTorch Image Captioning/8. Creating the Decoder Part 2-en_US.srt 15KB 22. Practical Variational Autoencoders in PyTorch/2. Practical VAE Part 2-en_US.srt 15KB 29. Sequence Modelling/4. How Attention Mechanisms Work-en_US.srt 15KB 18. Transfer Learning in PyTorch - Image Classification/4. Understanding the data-en_US.srt 15KB 24. Practical Neural Style Transfer in PyTorch/3. NST Practical Part 3-en_US.srt 15KB 8. Introduction to PyTorch/3. Installing PyTorch and an Introduction-en_US.srt 14KB 1. How Neural Networks and Backpropagation Works/7. Backpropagation Part 1-en_US.srt 14KB 27. Practical Recurrent Networks in PyTorch/4. Creating the Network-en_US.srt 14KB 10. Visualize the Learning Process/5. Visualize Learning Part 5-en_US.srt 14KB 15. CNN Architectures/2. Residual Networks Part 1-en_US.srt 14KB 18. Transfer Learning in PyTorch - Image Classification/2. Loading the Dataset-en_US.srt 14KB 24. Practical Neural Style Transfer in PyTorch/1. NST Practical Part 1-en_US.srt 14KB 33. Build a Chatbot with Transformers/18. Training Function-en_US.srt 14KB 33. Build a Chatbot with Transformers/3. Dataset Preprocessing Part 3-en_US.srt 14KB 21. Autoencoders and Variational Autoencoders/4. Variational Autoencoders-en_US.srt 14KB 1. How Neural Networks and Backpropagation Works/6. The Forward Propagation-en_US.srt 14KB 31. Practical Sequence Modelling in PyTorch Image Captioning/3. Accuracy Calculation-en_US.srt 14KB 38. GPT/1. GPT Part 1-en_US.srt 14KB 25. Recurrent Neural Networks/6. Vanishing and Exploding Gradient Problem-en_US.srt 14KB 23. Neural Style Transfer/3. NST Theory Part 3-en_US.srt 13KB 27. Practical Recurrent Networks in PyTorch/2. Processing the Text-en_US.srt 13KB 20. YOLO Object Detection (Theory)/12. YOLO Theory Part 12-en_US.srt 13KB 27. Practical Recurrent Networks in PyTorch/5. Training the Network-en_US.srt 13KB 33. Build a Chatbot with Transformers/1. Dataset Preprocessing Part 1-en_US.srt 13KB 15. CNN Architectures/6. Squeeze-Excite Networks-en_US.srt 13KB 8. Introduction to PyTorch/6. Torch Tensors - Part 2-en_US.srt 13KB 32. Transformers/4. MultiHead Attention Part 1-en_US.srt 13KB 6. Hyperparameter Tuning and Learning Rate Scheduling/3. Cyclic Learning Rate-en_US.srt 13KB 18. Transfer Learning in PyTorch - Image Classification/6. Testing and Visualizing the results-en_US.srt 13KB 1. How Neural Networks and Backpropagation Works/3. The Essence of Neural Networks-en_US.srt 13KB 7. Weight Initialization/2. What happens when all weights are initialized to the same value-en_US.srt 13KB 7. Weight Initialization/3. Xavier Initialization-en_US.srt 13KB 13. Convolutional Neural Networks/14. Softmax with Temperature-en_US.srt 13KB 33. Build a Chatbot with Transformers/5. Dataset Preprocessing Part 5-en_US.srt 13KB 24. Practical Neural Style Transfer in PyTorch/2. NST Practical Part 2-en_US.srt 12KB 33. Build a Chatbot with Transformers/20. Main Function and User Evaluation-en_US.srt 12KB 14. Practical Convolutional Networks in PyTorch - Image Classification/2. Visualizing and Loading the Dataset-en_US.srt 12KB 20. YOLO Object Detection (Theory)/3. YOLO Theory Part 3-en_US.srt 12KB 13. Convolutional Neural Networks/3. Filters and Features-en_US.srt 12KB 26. Word Embeddings/1. What are Word Embeddings-en_US.srt 12KB 38. GPT/2. GPT Part 2-en_US.srt 12KB 20. YOLO Object Detection (Theory)/6. YOLO Theory Part 6-en_US.srt 12KB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/3. Defining the Network Class-en_US.srt 12KB 10. Visualize the Learning Process/1. Visualize Learning Part 1-en_US.srt 12KB 1. How Neural Networks and Backpropagation Works/8. Backpropagation Part 2-en_US.srt 12KB 32. Transformers/15. Dropout-en_US.srt 12KB 4. Regularization and Normalization/3. Dropout-en_US.srt 12KB 8. Introduction to PyTorch/8. Automatic Differentiation-en_US.srt 12KB 37. Vision Transformers/2. Vision Transformer Part 2-en_US.srt 12KB 4. Regularization and Normalization/2. L1 and L2 Regularization-en_US.srt 12KB 21. Autoencoders and Variational Autoencoders/1. Autoencoders-en_US.srt 12KB 5. Optimization/13. AMSGrad-en_US.srt 12KB 15. CNN Architectures/8. Transfer Learning-en_US.srt 12KB 36. BERT/3. Next Sentence Prediction-en_US.srt 12KB 5. Optimization/5. Exponentially Weighted Average Implementation-en_US.srt 11KB 36. BERT/1. What is BERT and its structure-en_US.srt 11KB 17. Transposed Convolutions/2. Convolution Operation as Matrix Multiplication-en_US.srt 11KB 34. Universal Transformers/3. Transformers for other tasks-en_US.srt 11KB 2. Loss Functions/2. L1 Loss (MAE)-en_US.srt 11KB 11. Implementing a Neural Network from Scratch with Numpy/2. Understanding the Implementation-en_US.srt 11KB 25. Recurrent Neural Networks/2. Vanilla RNNs-en_US.srt 11KB 18. Transfer Learning in PyTorch - Image Classification/3. Modifying the Network-en_US.srt 11KB 13. Convolutional Neural Networks/11. CNN Characteristics-en_US.srt 11KB 2. Loss Functions/5. Cross Entropy Loss-en_US.srt 11KB 38. GPT/4. Byte-Pair Encoding-en_US.srt 10KB 32. Transformers/5. MultiHead Attention Part 2-en_US.srt 10KB 35. Google Colab and Gradient Accumulation/1. Running your models on Google Colab-en_US.srt 10KB 38. GPT/3. Zero-Shot Predictions with GPT-en_US.srt 10KB 33. Build a Chatbot with Transformers/9. MultiHead Attention Implementation Part 2-en_US.srt 10KB 10. Visualize the Learning Process/3. Visualize Learning Part 3-en_US.srt 10KB 20. YOLO Object Detection (Theory)/5. YOLO Theory Part 5-en_US.srt 10KB 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/2. Part 2 Data Normalization-en_US.srt 10KB 19. Convolutional Networks Visualization/1. Data and the Model-en_US.srt 10KB 4. Regularization and Normalization/7. Layer Normalization-en_US.srt 10KB 21. Autoencoders and Variational Autoencoders/7. Deep Fake-en_US.srt 10KB 28. Saving and Loading Models/2. Saving and Loading Part 2-en_US.srt 10KB 10. Visualize the Learning Process/6. Visualize Learning Part 6-en_US.srt 10KB 2. Loss Functions/6. Softmax Function-en_US.srt 10KB 33. Build a Chatbot with Transformers/12. Encoder Layer-en_US.srt 10KB 30. Practical Sequence Modelling in PyTorch Chatbot Application/4. Understanding Pack Padded Sequence-en_US.srt 10KB 38. GPT/6. Playing with HuggingFace models-en_US.srt 10KB 2. Loss Functions/7. KL divergence Loss-en_US.srt 10KB 27. Practical Recurrent Networks in PyTorch/3. Defining and Visualizing the Parameters-en_US.srt 10KB 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/3. Part 3 Creating and Loading the Dataset-en_US.srt 9KB 32. Transformers/8. Layer Normalization-en_US.srt 9KB 5. Optimization/9. Adam Optimization-en_US.srt 9KB 34. Universal Transformers/1. Universal Transformers-en_US.srt 9KB 5. Optimization/11. Weight Decay-en_US.srt 9KB 21. Autoencoders and Variational Autoencoders/2. Denoising Autoencoders-en_US.srt 9KB 13. Convolutional Neural Networks/2. Introduction to Convolutional Networks and the need for them-en_US.srt 9KB 2. Loss Functions/1. Mean Squared Error (MSE)-en_US.srt 9KB 23. Neural Style Transfer/1. NST Theory Part 1-en_US.srt 9KB 3. Activation Functions/4. ReLU and PReLU-en_US.srt 9KB 36. BERT/4. Fine-tuning BERT-en_US.srt 9KB 38. GPT/5. Technical Details of GPT-en_US.srt 9KB 17. Transposed Convolutions/1. Introduction to Transposed Convolutions-en_US.srt 9KB 25. Recurrent Neural Networks/9. GRUs-en_US.srt 9KB 14. Practical Convolutional Networks in PyTorch - Image Classification/7. Testing the CNN-en_US.srt 9KB 20. YOLO Object Detection (Theory)/7. YOLO Theory Part 7-en_US.srt 9KB 33. Build a Chatbot with Transformers/15. AdamWarmup-en_US.srt 9KB 33. Build a Chatbot with Transformers/8. MultiHead Attention Implementation Part 1-en_US.srt 9KB 32. Transformers/10. Masked MultiHead Attention-en_US.srt 9KB 13. Convolutional Neural Networks/5. More on Convolutions-en_US.srt 9KB 20. YOLO Object Detection (Theory)/4. YOLO Theory Part 4-en_US.srt 9KB 7. Weight Initialization/1. Normal Distribution-en_US.srt 9KB 32. Transformers/16. Learning Rate Warmup-en_US.srt 9KB 32. Transformers/2. Input Embeddings-en_US.srt 9KB 32. Transformers/7. Residual Learning-en_US.srt 8KB 33. Build a Chatbot with Transformers/17. Defining the Model-en_US.srt 8KB 17. Transposed Convolutions/3. Transposed Convolutions-en_US.srt 8KB 11. Implementing a Neural Network from Scratch with Numpy/8. Initializing the Network-en_US.srt 8KB 5. Optimization/1. Batch Gradient Descent-en_US.srt 8KB 3. Activation Functions/2. Sigmoid Activation-en_US.srt 8KB 2. Loss Functions/3. Huber Loss-en_US.srt 8KB 1. How Neural Networks and Backpropagation Works/2. The Rise of Deep Learning-en_US.srt 8KB 5. Optimization/6. Bias Correction in Exponentially Weighted Averages-en_US.srt 8KB 23. Neural Style Transfer/2. NST Theory Part 2-en_US.srt 8KB 4. Regularization and Normalization/8. Group Normalization-en_US.srt 8KB 26. Word Embeddings/5. Word Embeddings in PyTorch-en_US.srt 8KB 30. Practical Sequence Modelling in PyTorch Chatbot Application/1. Introduction-en_US.srt 8KB 30. Practical Sequence Modelling in PyTorch Chatbot Application/2. Understanding the Encoder-en_US.srt 8KB 32. Transformers/13. KL Divergence Loss-en_US.srt 8KB 5. Optimization/7. Momentum-en_US.srt 8KB 14. Practical Convolutional Networks in PyTorch - Image Classification/5. Understanding the Propagation-en_US.srt 8KB 27. Practical Recurrent Networks in PyTorch/1. Creating the Dictionary-en_US.srt 8KB 28. Saving and Loading Models/3. Saving and Loading Part 3-en_US.srt 8KB 3. Activation Functions/8. Mish Activation-en_US.srt 8KB 20. YOLO Object Detection (Theory)/11. YOLO Theory Part 11-en_US.srt 7KB 6. Hyperparameter Tuning and Learning Rate Scheduling/4. Cosine Annealing with Warm Restarts-en_US.srt 7KB 36. BERT/2. Masked Language Modelling-en_US.srt 7KB 20. YOLO Object Detection (Theory)/8. YOLO Theory Part 8-en_US.srt 7KB 10. Visualize the Learning Process/4. Visualize Learning Part 4-en_US.srt 7KB 29. Sequence Modelling/3. Attention Mechanisms-en_US.srt 7KB 11. Implementing a Neural Network from Scratch with Numpy/5. Prediction-en_US.srt 7KB 5. Optimization/4. Exponentially Weighted Average Intuition-en_US.srt 7KB 13. Convolutional Neural Networks/10. Important formulas-en_US.srt 7KB 18. Transfer Learning in PyTorch - Image Classification/5. Finetuning the Network-en_US.srt 7KB 10. Visualize the Learning Process/7. Neural Networks Playground-en_US.srt 7KB 33. Build a Chatbot with Transformers/13. Decoder Layer-en_US.srt 7KB 20. YOLO Object Detection (Theory)/1. YOLO Theory Part 1-en_US.srt 7KB 25. Recurrent Neural Networks/1. Why do we need RNNs-en_US.srt 7KB 29. Sequence Modelling/2. Image Captioning-en_US.srt 7KB 6. Hyperparameter Tuning and Learning Rate Scheduling/1. Introduction to Hyperparameter Tuning and Learning Rate Recap-en_US.srt 7KB 5. Optimization/2. Stochastic Gradient Descent-en_US.srt 7KB 30. Practical Sequence Modelling in PyTorch Chatbot Application/8. Teacher Forcing-en_US.srt 6KB 21. Autoencoders and Variational Autoencoders/3. The Problem in Autoencoders-en_US.srt 6KB 4. Regularization and Normalization/1. Overfitting-en_US.srt 6KB 14. Practical Convolutional Networks in PyTorch - Image Classification/8. Plotting and Putting into Action-en_US.srt 6KB 25. Recurrent Neural Networks/10. CNN-LSTM-en_US.srt 6KB 14. Practical Convolutional Networks in PyTorch - Image Classification/9. Predicting an image-en_US.srt 6KB 13. Convolutional Neural Networks/1. Prerequisite Filters-en_US.srt 6KB 4. Regularization and Normalization/5. Normalization-en_US.srt 6KB 13. Convolutional Neural Networks/7. A Tool for Convolution Visualization-en_US.srt 6KB 32. Transformers/14. Label Smoothing-en_US.srt 6KB 5. Optimization/12. Decoupling Weight Decay-en_US.srt 6KB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/6. Testing the Network-en_US.srt 6KB 33. Build a Chatbot with Transformers/4. Dataset Preprocessing Part 4-en_US.srt 6KB 14. Practical Convolutional Networks in PyTorch - Image Classification/4. Defining the Model-en_US.srt 6KB 11. Implementing a Neural Network from Scratch with Numpy/9. Training the Model-en_US.srt 5KB 20. YOLO Object Detection (Theory)/9. YOLO Theory Part 9-en_US.srt 5KB 25. Recurrent Neural Networks/8. Bidirectional RNNs-en_US.srt 5KB 3. Activation Functions/7. Swish Activation-en_US.srt 5KB 24. Practical Neural Style Transfer in PyTorch/5. Fast Neural Style Transfer-en_US.srt 5KB 25. Recurrent Neural Networks/3. Quiz Solution Discussion-en_US.srt 5KB 3. Activation Functions/1. Why we need activation functions-en_US.srt 5KB 7. Weight Initialization/4. He Norm Initialization-en_US.srt 5KB 3. Activation Functions/5. Exponentially Linear Units (ELU)-en_US.srt 5KB 13. Convolutional Neural Networks/12. Regularization and Batch Normalization in CNNs-en_US.srt 5KB 15. CNN Architectures/4. CNN Architectures Part 2-en_US.srt 5KB 13. Convolutional Neural Networks/4. Convolution over Volume Animation-en_US.srt 5KB 13. Convolutional Neural Networks/6. Quiz Solution Discussion-en_US.srt 4KB 33. Build a Chatbot with Transformers/11. Feed Forward Implementation-en_US.srt 4KB 26. Word Embeddings/2. Visualizing Word Embeddings-en_US.srt 4KB 32. Transformers/9. Feed Forward-en_US.srt 4KB 26. Word Embeddings/4. Word Embeddings Models-en_US.srt 4KB 3. Activation Functions/3. Tanh Activation-en_US.srt 4KB 6. Hyperparameter Tuning and Learning Rate Scheduling/5. Batch Size vs Learning Rate-en_US.srt 4KB 32. Transformers/6. Concat and Linear-en_US.srt 4KB 3. Activation Functions/6. Gated Linear Units (GLU)-en_US.srt 4KB 33. Build a Chatbot with Transformers/21. Action-en_US.srt 4KB 31. Practical Sequence Modelling in PyTorch Image Captioning/14. Results-en_US.srt 4KB 25. Recurrent Neural Networks/5. Stacked RNNs-en_US.srt 3KB 32. Transformers/11. MultiHead Attention in Decoder-en_US.srt 3KB 5. Optimization/3. Mini-Batch Gradient Descent-en_US.srt 3KB 31. Practical Sequence Modelling in PyTorch Image Captioning/13. Training-en_US.srt 3KB 20. YOLO Object Detection (Theory)/10. YOLO Theory Part 10-en_US.srt 3KB 13. Convolutional Neural Networks/9. CNN Visualization-en_US.srt 3KB 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/1. Code Details-en_US.srt 3KB 26. Word Embeddings/3. Measuring Word Embeddings-en_US.srt 3KB 10. Visualize the Learning Process/2. Visualize Learning Part 2-en_US.srt 2KB 4. Regularization and Normalization/4. DropConnect-en_US.srt 2KB 5. Optimization/10. SWATS - Switching from Adam to SGD-en_US.srt 2KB 20. YOLO Object Detection (Theory)/YOLO Code Note.html 1KB 8. Introduction to PyTorch/1. CODE FOR THIS COURSE-en_US.srt 701B 1. How Neural Networks and Backpropagation Works/BEFORE STARTING...PLEASE READ THIS.html 630B 11. Implementing a Neural Network from Scratch with Numpy/Notebook for the following Lecture.html 532B 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/The MNIST Dataset.html 421B 2. Loss Functions/Softmax with Temperature Controlling your distribution.html 394B 4. Regularization and Normalization/Note on Weight Decay.html 354B 1. How Neural Networks and Backpropagation Works/Before Proceeding with the Backpropagation.html 341B 9. Practical Neural Networks in PyTorch - Application 1 Diabetes/Download the Dataset.html 322B 13. Convolutional Neural Networks/Convolution over Volume Animation Resource.html 321B 27. Practical Recurrent Networks in PyTorch/Download the Dataset.html 312B 32. Transformers/SANITY CHECK ON PREVIOUS SECTIONS.html 272B 33. Build a Chatbot with Transformers/SANITY CHECK ON PREVIOUS SECTIONS.html 272B 34. Universal Transformers/SANITY CHECK ON PREVIOUS SECTIONS.html 272B 37. Vision Transformers/SANITY CHECK ON PREVIOUS SECTIONS.html 272B 33. Build a Chatbot with Transformers/CODE.html 268B 4. Regularization and Normalization/DropBlock in CNNs.html 256B 30. Practical Sequence Modelling in PyTorch Chatbot Application/Download the Dataset.html 252B 7. Weight Initialization/Practical Weight Initialization Note.html 186B 2. Loss Functions/Practical Loss Functions Note.html 179B 18. Transfer Learning in PyTorch - Image Classification/[Tutorialsplanet.NET].url 128B 2. Loss Functions/[Tutorialsplanet.NET].url 128B 25. Recurrent Neural Networks/[Tutorialsplanet.NET].url 128B 32. Transformers/[Tutorialsplanet.NET].url 128B 8. Introduction to PyTorch/[Tutorialsplanet.NET].url 128B [Tutorialsplanet.NET].url 128B 15. CNN Architectures/Note on Residual Networks Implementation.html 109B 38. GPT/Implementation.html 87B 18. Transfer Learning in PyTorch - Image Classification/2. External URLs.txt 70B 12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/4. Creating the network class and the network functions-en_US.srt 0B