589689.xyz

[] Udemy - Complete linear algebra theory and implementation

  • 收录时间:2020-03-18 00:30:02
  • 文件大小:7GB
  • 下载次数:40
  • 最近下载:2021-01-02 13:49:51
  • 磁力链接:

文件列表

  1. 11. Least-squares for model-fitting in statistics/8. Least-squares application 2.mp4 146MB
  2. 14. Quadratic form and definiteness/7. Application of the normalized quadratic form PCA.mp4 126MB
  3. 13. Singular value decomposition/8. Spectral theory of matrices.mp4 121MB
  4. 14. Quadratic form and definiteness/5. Code challenge Visualize the normalized quadratic form.mp4 94MB
  5. 5. Matrix rank/4. Computing rank theory and practice.mp4 90MB
  6. 12. Eigendecomposition/10. Matrix powers via diagonalization.mp4 86MB
  7. 7. Solving systems of equations/2. Systems of equations algebra and geometry.mp4 85MB
  8. 13. Singular value decomposition/4. Code challenge SVD vs. eigendecomposition for square symmetric matrices.mp4 83MB
  9. 11. Least-squares for model-fitting in statistics/2. Introduction to least-squares.mp4 81MB
  10. 7. Solving systems of equations/6. Reduced row echelon form.mp4 79MB
  11. 4. Matrix multiplications/11. Code challenge Geometric transformations via matrix multiplications.mp4 79MB
  12. 2. Vectors/10. Dot product geometry sign and orthogonality.mp4 77MB
  13. 8. Matrix determinant/8. Code challenge determinant of shifted matrices.mp4 76MB
  14. 11. Least-squares for model-fitting in statistics/7. Least-squares application 1.mp4 76MB
  15. 4. Matrix multiplications/7. Matrix-vector multiplication.mp4 76MB
  16. 2. Vectors/27. Linear independence.mp4 76MB
  17. 13. Singular value decomposition/9. SVD for low-rank approximations.mp4 74MB
  18. 10. Projections and orthogonalization/11. Code challenge Inverse via QR.mp4 72MB
  19. 12. Eigendecomposition/20. Code challenge GED in small and large matrices.mp4 72MB
  20. 13. Singular value decomposition/15. Code challenge Create matrix with desired condition number.mp4 72MB
  21. 9. Matrix inverse/6. Code challenge Implement the MCA algorithm!!.mp4 72MB
  22. 13. Singular value decomposition/2. Singular value decomposition (SVD).mp4 71MB
  23. 12. Eigendecomposition/3. Finding eigenvalues.mp4 70MB
  24. 2. Vectors/23. Subspaces.mp4 70MB
  25. 10. Projections and orthogonalization/8. QR decomposition.mp4 69MB
  26. 13. Singular value decomposition/5. Code challenge U from eigendecomposition of A^TA.mp4 67MB
  27. 4. Matrix multiplications/10. Code challenge Pure and impure rotation matrices.mp4 65MB
  28. 9. Matrix inverse/5. The MCA algorithm to compute the inverse.mp4 64MB
  29. 14. Quadratic form and definiteness/8. Quadratic form of generalized eigendecomposition.mp4 64MB
  30. 10. Projections and orthogonalization/9. Code challenge Gram-Schmidt algorithm.mp4 64MB
  31. 7. Solving systems of equations/4. Gaussian elimination.mp4 63MB
  32. 12. Eigendecomposition/2. What are eigenvalues and eigenvectors.mp4 63MB
  33. 8. Matrix determinant/5. Determinant of a 3x3 matrix.mp4 63MB
  34. 14. Quadratic form and definiteness/9. Matrix definiteness, geometry, and eigenvalues.mp4 63MB
  35. 12. Eigendecomposition/6. Code challenge eigenvalues of random matrices.mp4 63MB
  36. 6. Matrix spaces/5. Null space and left null space of a matrix.mp4 62MB
  37. 12. Eigendecomposition/14. Eigendecomposition of symmetric matrices.mp4 60MB
  38. 2. Vectors/25. Span.mp4 60MB
  39. 5. Matrix rank/11. Making a matrix full-rank by shifting.mp4 60MB
  40. 10. Projections and orthogonalization/5. Code challenge decompose vector to orthogonal components.mp4 59MB
  41. 5. Matrix rank/5. Rank of added and multiplied matrices.mp4 59MB
  42. 13. Singular value decomposition/10. Convert singular values to percent variance.mp4 58MB
  43. 2. Vectors/6. Dot product properties associative, distributive, commutative.mp4 57MB
  44. 10. Projections and orthogonalization/4. Orthogonal and parallel vector components.mp4 57MB
  45. 12. Eigendecomposition/7. Finding eigenvectors.mp4 57MB
  46. 9. Matrix inverse/7. Computing the inverse via row reduction.mp4 56MB
  47. 5. Matrix rank/8. Code challenge scalar multiplication and rank.mp4 56MB
  48. 10. Projections and orthogonalization/12. Code challenge Prove and demonstrate the Sherman-Morrison inverse.mp4 56MB
  49. 6. Matrix spaces/2. Column space of a matrix.mp4 56MB
  50. 2. Vectors/19. Hermitian transpose (a.k.a. conjugate transpose).mp4 55MB
  51. 14. Quadratic form and definiteness/3. The quadratic form in geometry.mp4 55MB
  52. 3. Introduction to matrices/4. A zoo of matrices.mp4 55MB
  53. 9. Matrix inverse/12. Pseudo-inverse, part 1.mp4 54MB
  54. 4. Matrix multiplications/13. Additive and multiplicative symmetric matrices.mp4 54MB
  55. 11. Least-squares for model-fitting in statistics/5. Least-squares via row-reduction.mp4 54MB
  56. 10. Projections and orthogonalization/3. Projections in R^N.mp4 53MB
  57. 4. Matrix multiplications/9. 2D transformation matrices.mp4 52MB
  58. 13. Singular value decomposition/6. Code challenge A^TA, Av, and singular vectors.mp4 51MB
  59. 6. Matrix spaces/8. Example of the four subspaces.mp4 51MB
  60. 2. Vectors/28. Basis.mp4 51MB
  61. 10. Projections and orthogonalization/7. Gram-Schmidt procedure.mp4 51MB
  62. 7. Solving systems of equations/7. Code challenge RREF of matrices with different sizes and ranks.mp4 51MB
  63. 4. Matrix multiplications/3. Four ways to think about matrix multiplication.mp4 51MB
  64. 1. Introductions/1. What is linear algebra.mp4 50MB
  65. 12. Eigendecomposition/16. Code challenge reconstruct a matrix from eigenlayers.mp4 50MB
  66. 4. Matrix multiplications/17. Multiplication of two symmetric matrices.mp4 50MB
  67. 12. Eigendecomposition/9. Diagonalization.mp4 50MB
  68. 6. Matrix spaces/6. Columnleft-null and rownull spaces are orthogonal.mp4 49MB
  69. 5. Matrix rank/2. Rank concepts, terms, and applications.mp4 49MB
  70. 9. Matrix inverse/2. Matrix inverse Concept and applications.mp4 49MB
  71. 12. Eigendecomposition/11. Code challenge eigendecomposition of matrix differences.mp4 49MB
  72. 12. Eigendecomposition/13. Eigenvectors of repeated eigenvalues.mp4 48MB
  73. 4. Matrix multiplications/19. Code challenge Fourier transform via matrix multiplication!.mp4 48MB
  74. 12. Eigendecomposition/8. Eigendecomposition by hand two examples.mp4 47MB
  75. 14. Quadratic form and definiteness/2. The quadratic form in algebra.mp4 47MB
  76. 7. Solving systems of equations/8. Matrix spaces after row reduction.mp4 46MB
  77. 14. Quadratic form and definiteness/11. Proof Eigenvalues and matrix definiteness.mp4 46MB
  78. 12. Eigendecomposition/19. Generalized eigendecomposition.mp4 45MB
  79. 4. Matrix multiplications/20. Frobenius dot product.mp4 45MB
  80. 9. Matrix inverse/10. One-sided inverses in MATLAB.mp4 45MB
  81. 5. Matrix rank/9. Rank of A^TA and AA^T.mp4 45MB
  82. 2. Vectors/21. Code challenge dot products with unit vectors.mp4 45MB
  83. 2. Vectors/13. Code challenge dot product sign and scalar multiplication.mp4 45MB
  84. 13. Singular value decomposition/13. SVD, matrix inverse, and pseudoinverse.mp4 45MB
  85. 11. Least-squares for model-fitting in statistics/3. Least-squares via left inverse.mp4 44MB
  86. 2. Vectors/17. Vector cross product.mp4 44MB
  87. 10. Projections and orthogonalization/6. Orthogonal matrices.mp4 44MB
  88. 11. Least-squares for model-fitting in statistics/4. Least-squares via orthogonal projection.mp4 42MB
  89. 13. Singular value decomposition/14. Condition number of a matrix.mp4 42MB
  90. 2. Vectors/16. Outer product.mp4 42MB
  91. 9. Matrix inverse/9. Left inverse and right inverse.mp4 42MB
  92. 12. Eigendecomposition/12. Eigenvectors of distinct eigenvalues.mp4 42MB
  93. 2. Vectors/2. Algebraic and geometric interpretations of vectors.mp4 41MB
  94. 6. Matrix spaces/7. Dimensions of columnrownull spaces.mp4 40MB
  95. 9. Matrix inverse/4. Inverse of a 2x2 matrix.mp4 39MB
  96. 2. Vectors/22. Dimensions and fields in linear algebra.mp4 39MB
  97. 8. Matrix determinant/4. Code challenge determinant of small and large singular matrices.mp4 39MB
  98. 4. Matrix multiplications/2. Introduction to standard matrix multiplication.mp4 38MB
  99. 9. Matrix inverse/8. Code challenge inverse of a diagonal matrix.mp4 37MB
  100. 13. Singular value decomposition/7. SVD and the four subspaces.mp4 37MB
  101. 10. Projections and orthogonalization/2. Projections in R^2.mp4 37MB
  102. 4. Matrix multiplications/6. Order-of-operations on matrices.mp4 37MB
  103. 3. Introduction to matrices/13. Code challenge linearity of trace.mp4 36MB
  104. 4. Matrix multiplications/4. Code challenge matrix multiplication by layering.mp4 36MB
  105. 5. Matrix rank/7. Code challenge reduced-rank matrix via multiplication.mp4 34MB
  106. 11. Least-squares for model-fitting in statistics/6. Model-predicted values and residuals.mp4 34MB
  107. 4. Matrix multiplications/16. Code challenge symmetry of combined symmetric matrices.mp4 34MB
  108. 6. Matrix spaces/9. More on Ax=b and Ax=0.mp4 34MB
  109. 12. Eigendecomposition/5. Code challenge eigenvalues of diagonal and triangular matrices.mp4 34MB
  110. 8. Matrix determinant/2. Determinant concept and applications.mp4 34MB
  111. 12. Eigendecomposition/18. Code challenge trace and determinant, eigenvalues sum and product.mp4 33MB
  112. 2. Vectors/18. Vectors with complex numbers.mp4 33MB
  113. 3. Introduction to matrices/2. Matrix terminology and dimensionality.mp4 33MB
  114. 2. Vectors/5. Vector-vector multiplication the dot product.mp4 32MB
  115. 3. Introduction to matrices/9. Transpose.mp4 31MB
  116. 14. Quadratic form and definiteness/4. The normalized quadratic form.mp4 31MB
  117. 14. Quadratic form and definiteness/10. Proof A^TA is always positive (semi)definite.mp4 31MB
  118. 5. Matrix rank/10. Code challenge rank of multiplied and summed matrices.mp4 30MB
  119. 1. Introductions/2. Linear algebra applications.mp4 30MB
  120. 2. Vectors/4. Vector-scalar multiplication.mp4 29MB
  121. 7. Solving systems of equations/5. Echelon form and pivots.mp4 29MB
  122. 11. Least-squares for model-fitting in statistics/9. Code challenge Least-squares via QR decomposition.mp4 29MB
  123. 2. Vectors/24. Subspaces vs. subsets.mp4 29MB
  124. 13. Singular value decomposition/11. Code challenge When is UV^T valid, what is its norm, and is it orthogonal.mp4 29MB
  125. 6. Matrix spaces/3. Column space, visualized in MATLAB.mp4 28MB
  126. 2. Vectors/14. Code challenge is the dot product commutative.mp4 28MB
  127. 8. Matrix determinant/3. Determinant of a 2x2 matrix.mp4 27MB
  128. 3. Introduction to matrices/12. Diagonal and trace.mp4 27MB
  129. 3. Introduction to matrices/6. Matrix addition and subtraction.mp4 27MB
  130. 1. Introductions/3. How best to learn from this course.mp4 27MB
  131. 1. Introductions/6. Using the Q&A forum.mp4 27MB
  132. 2. Vectors/20. Interpreting and creating unit vectors.mp4 27MB
  133. 2. Vectors/3. Vector addition and subtraction.mp4 26MB
  134. 3. Introduction to matrices/8. Code challenge is matrix-scalar multiplication a linear operation.mp4 25MB
  135. 4. Matrix multiplications/12. Additive and multiplicative matrix identities.mp4 25MB
  136. 14. Quadratic form and definiteness/6. Eigenvectors and the quadratic form surface.mp4 25MB
  137. 12. Eigendecomposition/15. Eigenlayers of a matrix.mp4 25MB
  138. 5. Matrix rank/12. Code challenge is this vector in the span of this set.mp4 24MB
  139. 2. Vectors/8. Vector length.mp4 24MB
  140. 6. Matrix spaces/4. Row space of a matrix.mp4 23MB
  141. 2. Vectors/7. Code challenge dot products with matrix columns.mp4 23MB
  142. 10. Projections and orthogonalization/13. Code challenge A^TA = R^TR.mp4 22MB
  143. 8. Matrix determinant/7. Find matrix values for a given determinant.mp4 22MB
  144. 1. Introductions/4. Using MATLAB, Octave, or Python in this course.mp4 21MB
  145. 7. Solving systems of equations/3. Converting systems of equations to matrix equations.mp4 21MB
  146. 12. Eigendecomposition/17. Eigendecomposition of singular matrices.mp4 20MB
  147. 4. Matrix multiplications/18. Code challenge standard and Hadamard multiplication for diagonal matrices.mp4 20MB
  148. 9. Matrix inverse/13. Code challenge pseudoinverse of invertible matrices.mp4 19MB
  149. 9. Matrix inverse/3. Computing the inverse in MATLAB.mp4 19MB
  150. 4. Matrix multiplications/5. Matrix multiplication with a diagonal matrix.mp4 19MB
  151. 1. Introductions/5. Leaving reviews, course coupons.mp4 18MB
  152. 8. Matrix determinant/6. Code challenge large matrices with row exchanges.mp4 18MB
  153. 9. Matrix inverse/11. Proof the inverse is unique.mp4 16MB
  154. 4. Matrix multiplications/21. What about matrix division.mp4 14MB
  155. 12. Eigendecomposition/4. Shortcut for eigenvalues of a 2x2 matrix.mp4 13MB
  156. 2. Vectors/15. Vector Hadamard multiplication.mp4 12MB
  157. 4. Matrix multiplications/14. Hadamard (element-wise) multiplication.mp4 12MB
  158. 3. Introduction to matrices/7. Matrix-scalar multiplication.mp4 8MB
  159. 10. Projections and orthogonalization/10. Matrix inverse via QR decomposition.mp4 7MB
  160. 3. Introduction to matrices/10. Complex matrices.mp4 7MB
  161. 14. Quadratic form and definiteness/1.1 linalg_quadformDefinite.zip.zip 396KB
  162. 2. Vectors/1.1 linalg_vectors.zip.zip 386KB
  163. 13. Singular value decomposition/1.1 linalg_svd.zip.zip 331KB
  164. 11. Least-squares for model-fitting in statistics/1.1 linalg_leastsquares.zip.zip 315KB
  165. 12. Eigendecomposition/1.1 linalg_eig.zip.zip 297KB
  166. 10. Projections and orthogonalization/1.1 linalg_projorth.zip.zip 246KB
  167. 9. Matrix inverse/1.1 linalg_inverse.zip.zip 226KB
  168. 4. Matrix multiplications/1.1 linalg_matrixMult.zip.zip 215KB
  169. 7. Solving systems of equations/1.1 linalg_systems.zip.zip 211KB
  170. 6. Matrix spaces/1.1 linalg_matrixSpaces.zip.zip 210KB
  171. 5. Matrix rank/1.1 linalg_matrixRank.zip.zip 180KB
  172. 3. Introduction to matrices/1.1 linalg_matrices.zip.zip 166KB
  173. 8. Matrix determinant/1.1 linalg_matrixDet.pdf.pdf 138KB
  174. 6. Matrix spaces/5. Null space and left null space of a matrix.mp4.jpg 60KB
  175. 10. Projections and orthogonalization/8. QR decomposition.mp4.jpg 54KB
  176. 11. Least-squares for model-fitting in statistics/8. Least-squares application 2.vtt 22KB
  177. 14. Quadratic form and definiteness/7. Application of the normalized quadratic form PCA.vtt 20KB
  178. 7. Solving systems of equations/6. Reduced row echelon form.vtt 20KB
  179. 5. Matrix rank/4. Computing rank theory and practice.vtt 19KB
  180. 7. Solving systems of equations/4. Gaussian elimination.vtt 18KB
  181. 2. Vectors/10. Dot product geometry sign and orthogonality.vtt 18KB
  182. 7. Solving systems of equations/2. Systems of equations algebra and geometry.vtt 18KB
  183. 2. Vectors/27. Linear independence.vtt 18KB
  184. 12. Eigendecomposition/3. Finding eigenvalues.vtt 17KB
  185. 9. Matrix inverse/6. Code challenge Implement the MCA algorithm!!.vtt 17KB
  186. 2. Vectors/23. Subspaces.vtt 17KB
  187. 4. Matrix multiplications/7. Matrix-vector multiplication.vtt 17KB
  188. 13. Singular value decomposition/4. Code challenge SVD vs. eigendecomposition for square symmetric matrices.vtt 17KB
  189. 12. Eigendecomposition/10. Matrix powers via diagonalization.vtt 16KB
  190. 14. Quadratic form and definiteness/5. Code challenge Visualize the normalized quadratic form.vtt 16KB
  191. 9. Matrix inverse/5. The MCA algorithm to compute the inverse.vtt 16KB
  192. 6. Matrix spaces/5. Null space and left null space of a matrix.vtt 16KB
  193. 4. Matrix multiplications/11. Code challenge Geometric transformations via matrix multiplications.vtt 16KB
  194. 8. Matrix determinant/8. Code challenge determinant of shifted matrices.vtt 16KB
  195. 13. Singular value decomposition/2. Singular value decomposition (SVD).vtt 16KB
  196. 10. Projections and orthogonalization/12. Code challenge Prove and demonstrate the Sherman-Morrison inverse.vtt 16KB
  197. 13. Singular value decomposition/8. Spectral theory of matrices.vtt 16KB
  198. 10. Projections and orthogonalization/9. Code challenge Gram-Schmidt algorithm.vtt 15KB
  199. 8. Matrix determinant/5. Determinant of a 3x3 matrix.vtt 15KB
  200. 10. Projections and orthogonalization/7. Gram-Schmidt procedure.vtt 15KB
  201. 5. Matrix rank/8. Code challenge scalar multiplication and rank.vtt 15KB
  202. 11. Least-squares for model-fitting in statistics/2. Introduction to least-squares.vtt 15KB
  203. 12. Eigendecomposition/20. Code challenge GED in small and large matrices.vtt 15KB
  204. 2. Vectors/6. Dot product properties associative, distributive, commutative.vtt 15KB
  205. 6. Matrix spaces/2. Column space of a matrix.vtt 14KB
  206. 9. Matrix inverse/2. Matrix inverse Concept and applications.vtt 14KB
  207. 13. Singular value decomposition/5. Code challenge U from eigendecomposition of A^TA.vtt 14KB
  208. 10. Projections and orthogonalization/8. QR decomposition.vtt 14KB
  209. 10. Projections and orthogonalization/4. Orthogonal and parallel vector components.vtt 14KB
  210. 13. Singular value decomposition/15. Code challenge Create matrix with desired condition number.vtt 14KB
  211. 12. Eigendecomposition/2. What are eigenvalues and eigenvectors.vtt 14KB
  212. 11. Least-squares for model-fitting in statistics/7. Least-squares application 1.vtt 14KB
  213. 2. Vectors/19. Hermitian transpose (a.k.a. conjugate transpose).vtt 14KB
  214. 7. Solving systems of equations/7. Code challenge RREF of matrices with different sizes and ranks.vtt 13KB
  215. 9. Matrix inverse/7. Computing the inverse via row reduction.vtt 13KB
  216. 4. Matrix multiplications/9. 2D transformation matrices.vtt 13KB
  217. 6. Matrix spaces/8. Example of the four subspaces.vtt 13KB
  218. 12. Eigendecomposition/7. Finding eigenvectors.vtt 13KB
  219. 4. Matrix multiplications/13. Additive and multiplicative symmetric matrices.vtt 13KB
  220. 4. Matrix multiplications/3. Four ways to think about matrix multiplication.vtt 13KB
  221. 10. Projections and orthogonalization/6. Orthogonal matrices.vtt 13KB
  222. 12. Eigendecomposition/14. Eigendecomposition of symmetric matrices.vtt 13KB
  223. 2. Vectors/13. Code challenge dot product sign and scalar multiplication.vtt 13KB
  224. 13. Singular value decomposition/9. SVD for low-rank approximations.vtt 13KB
  225. 11. Least-squares for model-fitting in statistics/5. Least-squares via row-reduction.vtt 13KB
  226. 3. Introduction to matrices/4. A zoo of matrices.vtt 13KB
  227. 13. Singular value decomposition/10. Convert singular values to percent variance.vtt 13KB
  228. 2. Vectors/28. Basis.vtt 13KB
  229. 10. Projections and orthogonalization/5. Code challenge decompose vector to orthogonal components.vtt 13KB
  230. 5. Matrix rank/5. Rank of added and multiplied matrices.vtt 13KB
  231. 13. Singular value decomposition/6. Code challenge A^TA, Av, and singular vectors.vtt 13KB
  232. 2. Vectors/25. Span.vtt 13KB
  233. 14. Quadratic form and definiteness/3. The quadratic form in geometry.vtt 12KB
  234. 5. Matrix rank/11. Making a matrix full-rank by shifting.vtt 12KB
  235. 5. Matrix rank/2. Rank concepts, terms, and applications.vtt 12KB
  236. 4. Matrix multiplications/10. Code challenge Pure and impure rotation matrices.vtt 12KB
  237. 14. Quadratic form and definiteness/2. The quadratic form in algebra.vtt 12KB
  238. 6. Matrix spaces/6. Columnleft-null and rownull spaces are orthogonal.vtt 12KB
  239. 12. Eigendecomposition/11. Code challenge eigendecomposition of matrix differences.vtt 12KB
  240. 2. Vectors/21. Code challenge dot products with unit vectors.vtt 12KB
  241. 12. Eigendecomposition/16. Code challenge reconstruct a matrix from eigenlayers.vtt 12KB
  242. 4. Matrix multiplications/19. Code challenge Fourier transform via matrix multiplication!.vtt 12KB
  243. 12. Eigendecomposition/13. Eigenvectors of repeated eigenvalues.vtt 12KB
  244. 5. Matrix rank/9. Rank of A^TA and AA^T.vtt 12KB
  245. 10. Projections and orthogonalization/3. Projections in R^N.vtt 11KB
  246. 12. Eigendecomposition/9. Diagonalization.vtt 11KB
  247. 4. Matrix multiplications/17. Multiplication of two symmetric matrices.vtt 11KB
  248. 2. Vectors/2. Algebraic and geometric interpretations of vectors.vtt 11KB
  249. 12. Eigendecomposition/8. Eigendecomposition by hand two examples.vtt 11KB
  250. 12. Eigendecomposition/6. Code challenge eigenvalues of random matrices.vtt 11KB
  251. 14. Quadratic form and definiteness/9. Matrix definiteness, geometry, and eigenvalues.vtt 11KB
  252. 14. Quadratic form and definiteness/8. Quadratic form of generalized eigendecomposition.vtt 11KB
  253. 11. Least-squares for model-fitting in statistics/3. Least-squares via left inverse.vtt 11KB
  254. 7. Solving systems of equations/8. Matrix spaces after row reduction.vtt 11KB
  255. 9. Matrix inverse/9. Left inverse and right inverse.vtt 11KB
  256. 8. Matrix determinant/4. Code challenge determinant of small and large singular matrices.vtt 10KB
  257. 13. Singular value decomposition/13. SVD, matrix inverse, and pseudoinverse.vtt 10KB
  258. 12. Eigendecomposition/19. Generalized eigendecomposition.vtt 10KB
  259. 11. Least-squares for model-fitting in statistics/4. Least-squares via orthogonal projection.vtt 10KB
  260. 3. Introduction to matrices/13. Code challenge linearity of trace.vtt 10KB
  261. 13. Singular value decomposition/14. Condition number of a matrix.vtt 10KB
  262. 12. Eigendecomposition/18. Code challenge trace and determinant, eigenvalues sum and product.vtt 10KB
  263. 9. Matrix inverse/12. Pseudo-inverse, part 1.vtt 10KB
  264. 10. Projections and orthogonalization/2. Projections in R^2.vtt 10KB
  265. 2. Vectors/16. Outer product.vtt 10KB
  266. 9. Matrix inverse/8. Code challenge inverse of a diagonal matrix.vtt 9KB
  267. 12. Eigendecomposition/5. Code challenge eigenvalues of diagonal and triangular matrices.vtt 9KB
  268. 4. Matrix multiplications/20. Frobenius dot product.vtt 9KB
  269. 4. Matrix multiplications/2. Introduction to standard matrix multiplication.vtt 9KB
  270. 4. Matrix multiplications/16. Code challenge symmetry of combined symmetric matrices.vtt 9KB
  271. 4. Matrix multiplications/4. Code challenge matrix multiplication by layering.vtt 9KB
  272. 2. Vectors/18. Vectors with complex numbers.vtt 9KB
  273. 1. Introductions/1. What is linear algebra.vtt 9KB
  274. 6. Matrix spaces/7. Dimensions of columnrownull spaces.vtt 9KB
  275. 10. Projections and orthogonalization/11. Code challenge Inverse via QR.vtt 9KB
  276. 12. Eigendecomposition/12. Eigenvectors of distinct eigenvalues.vtt 9KB
  277. 3. Introduction to matrices/2. Matrix terminology and dimensionality.vtt 9KB
  278. 9. Matrix inverse/4. Inverse of a 2x2 matrix.vtt 9KB
  279. 14. Quadratic form and definiteness/11. Proof Eigenvalues and matrix definiteness.vtt 9KB
  280. 2. Vectors/22. Dimensions and fields in linear algebra.vtt 9KB
  281. 5. Matrix rank/7. Code challenge reduced-rank matrix via multiplication.vtt 9KB
  282. 7. Solving systems of equations/5. Echelon form and pivots.vtt 8KB
  283. 2. Vectors/5. Vector-vector multiplication the dot product.vtt 8KB
  284. 2. Vectors/14. Code challenge is the dot product commutative.vtt 8KB
  285. 11. Least-squares for model-fitting in statistics/9. Code challenge Least-squares via QR decomposition.vtt 8KB
  286. 6. Matrix spaces/9. More on Ax=b and Ax=0.vtt 8KB
  287. 8. Matrix determinant/3. Determinant of a 2x2 matrix.vtt 8KB
  288. 13. Singular value decomposition/7. SVD and the four subspaces.vtt 8KB
  289. 5. Matrix rank/12. Code challenge is this vector in the span of this set.vtt 8KB
  290. 2. Vectors/7. Code challenge dot products with matrix columns.vtt 8KB
  291. 14. Quadratic form and definiteness/10. Proof A^TA is always positive (semi)definite.vtt 8KB
  292. 11. Least-squares for model-fitting in statistics/6. Model-predicted values and residuals.vtt 8KB
  293. 2. Vectors/4. Vector-scalar multiplication.vtt 8KB
  294. 5. Matrix rank/10. Code challenge rank of multiplied and summed matrices.vtt 8KB
  295. 2. Vectors/17. Vector cross product.vtt 8KB
  296. 3. Introduction to matrices/9. Transpose.vtt 8KB
  297. 9. Matrix inverse/10. One-sided inverses in MATLAB.vtt 7KB
  298. 4. Matrix multiplications/6. Order-of-operations on matrices.vtt 7KB
  299. 14. Quadratic form and definiteness/4. The normalized quadratic form.vtt 7KB
  300. 8. Matrix determinant/2. Determinant concept and applications.vtt 7KB
  301. 13. Singular value decomposition/11. Code challenge When is UV^T valid, what is its norm, and is it orthogonal.vtt 7KB
  302. 2. Vectors/3. Vector addition and subtraction.vtt 7KB
  303. 1. Introductions/2. Linear algebra applications.vtt 7KB
  304. 3. Introduction to matrices/6. Matrix addition and subtraction.vtt 7KB
  305. 2. Vectors/8. Vector length.vtt 7KB
  306. 3. Introduction to matrices/12. Diagonal and trace.vtt 7KB
  307. 1. Introductions/6. Using the Q&A forum.vtt 7KB
  308. 12. Eigendecomposition/15. Eigenlayers of a matrix.vtt 6KB
  309. 3. Introduction to matrices/8. Code challenge is matrix-scalar multiplication a linear operation.vtt 6KB
  310. 2. Vectors/24. Subspaces vs. subsets.vtt 6KB
  311. 2. Vectors/20. Interpreting and creating unit vectors.vtt 6KB
  312. 8. Matrix determinant/7. Find matrix values for a given determinant.vtt 6KB
  313. 4. Matrix multiplications/12. Additive and multiplicative matrix identities.vtt 6KB
  314. 4. Matrix multiplications/18. Code challenge standard and Hadamard multiplication for diagonal matrices.vtt 6KB
  315. 8. Matrix determinant/6. Code challenge large matrices with row exchanges.vtt 6KB
  316. 12. Eigendecomposition/17. Eigendecomposition of singular matrices.vtt 5KB
  317. 1. Introductions/3. How best to learn from this course.vtt 5KB
  318. 7. Solving systems of equations/3. Converting systems of equations to matrix equations.vtt 5KB
  319. 9. Matrix inverse/13. Code challenge pseudoinverse of invertible matrices.vtt 5KB
  320. 4. Matrix multiplications/21. What about matrix division.vtt 5KB
  321. 10. Projections and orthogonalization/13. Code challenge A^TA = R^TR.vtt 5KB
  322. 6. Matrix spaces/4. Row space of a matrix.vtt 5KB
  323. 1. Introductions/4. Using MATLAB, Octave, or Python in this course.vtt 5KB
  324. 4. Matrix multiplications/5. Matrix multiplication with a diagonal matrix.vtt 4KB
  325. 6. Matrix spaces/3. Column space, visualized in MATLAB.vtt 4KB
  326. 14. Quadratic form and definiteness/6. Eigenvectors and the quadratic form surface.vtt 4KB
  327. 9. Matrix inverse/3. Computing the inverse in MATLAB.vtt 4KB
  328. 9. Matrix inverse/11. Proof the inverse is unique.vtt 3KB
  329. 12. Eigendecomposition/4. Shortcut for eigenvalues of a 2x2 matrix.vtt 3KB
  330. 4. Matrix multiplications/14. Hadamard (element-wise) multiplication.vtt 3KB
  331. 1. Introductions/5. Leaving reviews, course coupons.vtt 3KB
  332. 2. Vectors/15. Vector Hadamard multiplication.vtt 3KB
  333. 15. Discount coupons for related courses/1. Bonus Links to related courses.html 2KB
  334. 3. Introduction to matrices/10. Complex matrices.vtt 2KB
  335. 10. Projections and orthogonalization/10. Matrix inverse via QR decomposition.vtt 2KB
  336. 3. Introduction to matrices/7. Matrix-scalar multiplication.vtt 2KB
  337. 6. Matrix spaces/5. Null space and left null space of a matrix.txt 250B
  338. 10. Projections and orthogonalization/4. Orthogonal and parallel vector components.txt 249B
  339. 10. Projections and orthogonalization/8. QR decomposition.txt 224B
  340. 13. Singular value decomposition/12. Singular values of an orthogonal matrix.html 144B
  341. 13. Singular value decomposition/3. Are these two expressions equal.html 144B
  342. 2. Vectors/11. Vector orthogonality.html 144B
  343. 2. Vectors/12. Relative vector angles.html 144B
  344. 2. Vectors/26. In the span.html 144B
  345. 2. Vectors/9. Vector length in MATLAB.html 144B
  346. 3. Introduction to matrices/11. Addition, equality, and transpose.html 144B
  347. 3. Introduction to matrices/3. Matrix sizes and dimensionality.html 144B
  348. 3. Introduction to matrices/5. Can the matrices be concatenated.html 144B
  349. 4. Matrix multiplications/15. Matrix operation equality.html 144B
  350. 4. Matrix multiplications/8. Find the missing value!.html 144B
  351. 5. Matrix rank/3. Maximum possible rank..html 144B
  352. 5. Matrix rank/6. What's the maximum possible rank.html 144B
  353. 4. Matrix multiplications/1. Exercises + code.html 87B
  354. 11. Least-squares for model-fitting in statistics/1. Exercises + code.html 86B
  355. 5. Matrix rank/1. Exercises + code.html 85B
  356. 9. Matrix inverse/1. Exercises + code.html 85B
  357. 2. Vectors/1. Exercises + code.html 80B
  358. 10. Projections and orthogonalization/1. Exercises + code.html 76B
  359. 3. Introduction to matrices/1. Exercises + code.html 75B
  360. 14. Quadratic form and definiteness/1. Exercises + code.html 55B
  361. 8. Matrix determinant/1. Exercises.html 52B
  362. [GigaCourse.com].url 49B
  363. 7. Solving systems of equations/1. Exercises + code.html 40B
  364. 6. Matrix spaces/1. Exercises + code.html 36B
  365. 12. Eigendecomposition/1. Exercises + code.html 33B
  366. 13. Singular value decomposition/1. Exercises + code.html 26B