[] Udemy - Complete linear algebra theory and implementation
- 收录时间:2020-03-18 00:30:02
- 文件大小:7GB
- 下载次数:40
- 最近下载:2021-01-02 13:49:51
- 磁力链接:
-
文件列表
- 11. Least-squares for model-fitting in statistics/8. Least-squares application 2.mp4 146MB
- 14. Quadratic form and definiteness/7. Application of the normalized quadratic form PCA.mp4 126MB
- 13. Singular value decomposition/8. Spectral theory of matrices.mp4 121MB
- 14. Quadratic form and definiteness/5. Code challenge Visualize the normalized quadratic form.mp4 94MB
- 5. Matrix rank/4. Computing rank theory and practice.mp4 90MB
- 12. Eigendecomposition/10. Matrix powers via diagonalization.mp4 86MB
- 7. Solving systems of equations/2. Systems of equations algebra and geometry.mp4 85MB
- 13. Singular value decomposition/4. Code challenge SVD vs. eigendecomposition for square symmetric matrices.mp4 83MB
- 11. Least-squares for model-fitting in statistics/2. Introduction to least-squares.mp4 81MB
- 7. Solving systems of equations/6. Reduced row echelon form.mp4 79MB
- 4. Matrix multiplications/11. Code challenge Geometric transformations via matrix multiplications.mp4 79MB
- 2. Vectors/10. Dot product geometry sign and orthogonality.mp4 77MB
- 8. Matrix determinant/8. Code challenge determinant of shifted matrices.mp4 76MB
- 11. Least-squares for model-fitting in statistics/7. Least-squares application 1.mp4 76MB
- 4. Matrix multiplications/7. Matrix-vector multiplication.mp4 76MB
- 2. Vectors/27. Linear independence.mp4 76MB
- 13. Singular value decomposition/9. SVD for low-rank approximations.mp4 74MB
- 10. Projections and orthogonalization/11. Code challenge Inverse via QR.mp4 72MB
- 12. Eigendecomposition/20. Code challenge GED in small and large matrices.mp4 72MB
- 13. Singular value decomposition/15. Code challenge Create matrix with desired condition number.mp4 72MB
- 9. Matrix inverse/6. Code challenge Implement the MCA algorithm!!.mp4 72MB
- 13. Singular value decomposition/2. Singular value decomposition (SVD).mp4 71MB
- 12. Eigendecomposition/3. Finding eigenvalues.mp4 70MB
- 2. Vectors/23. Subspaces.mp4 70MB
- 10. Projections and orthogonalization/8. QR decomposition.mp4 69MB
- 13. Singular value decomposition/5. Code challenge U from eigendecomposition of A^TA.mp4 67MB
- 4. Matrix multiplications/10. Code challenge Pure and impure rotation matrices.mp4 65MB
- 9. Matrix inverse/5. The MCA algorithm to compute the inverse.mp4 64MB
- 14. Quadratic form and definiteness/8. Quadratic form of generalized eigendecomposition.mp4 64MB
- 10. Projections and orthogonalization/9. Code challenge Gram-Schmidt algorithm.mp4 64MB
- 7. Solving systems of equations/4. Gaussian elimination.mp4 63MB
- 12. Eigendecomposition/2. What are eigenvalues and eigenvectors.mp4 63MB
- 8. Matrix determinant/5. Determinant of a 3x3 matrix.mp4 63MB
- 14. Quadratic form and definiteness/9. Matrix definiteness, geometry, and eigenvalues.mp4 63MB
- 12. Eigendecomposition/6. Code challenge eigenvalues of random matrices.mp4 63MB
- 6. Matrix spaces/5. Null space and left null space of a matrix.mp4 62MB
- 12. Eigendecomposition/14. Eigendecomposition of symmetric matrices.mp4 60MB
- 2. Vectors/25. Span.mp4 60MB
- 5. Matrix rank/11. Making a matrix full-rank by shifting.mp4 60MB
- 10. Projections and orthogonalization/5. Code challenge decompose vector to orthogonal components.mp4 59MB
- 5. Matrix rank/5. Rank of added and multiplied matrices.mp4 59MB
- 13. Singular value decomposition/10. Convert singular values to percent variance.mp4 58MB
- 2. Vectors/6. Dot product properties associative, distributive, commutative.mp4 57MB
- 10. Projections and orthogonalization/4. Orthogonal and parallel vector components.mp4 57MB
- 12. Eigendecomposition/7. Finding eigenvectors.mp4 57MB
- 9. Matrix inverse/7. Computing the inverse via row reduction.mp4 56MB
- 5. Matrix rank/8. Code challenge scalar multiplication and rank.mp4 56MB
- 10. Projections and orthogonalization/12. Code challenge Prove and demonstrate the Sherman-Morrison inverse.mp4 56MB
- 6. Matrix spaces/2. Column space of a matrix.mp4 56MB
- 2. Vectors/19. Hermitian transpose (a.k.a. conjugate transpose).mp4 55MB
- 14. Quadratic form and definiteness/3. The quadratic form in geometry.mp4 55MB
- 3. Introduction to matrices/4. A zoo of matrices.mp4 55MB
- 9. Matrix inverse/12. Pseudo-inverse, part 1.mp4 54MB
- 4. Matrix multiplications/13. Additive and multiplicative symmetric matrices.mp4 54MB
- 11. Least-squares for model-fitting in statistics/5. Least-squares via row-reduction.mp4 54MB
- 10. Projections and orthogonalization/3. Projections in R^N.mp4 53MB
- 4. Matrix multiplications/9. 2D transformation matrices.mp4 52MB
- 13. Singular value decomposition/6. Code challenge A^TA, Av, and singular vectors.mp4 51MB
- 6. Matrix spaces/8. Example of the four subspaces.mp4 51MB
- 2. Vectors/28. Basis.mp4 51MB
- 10. Projections and orthogonalization/7. Gram-Schmidt procedure.mp4 51MB
- 7. Solving systems of equations/7. Code challenge RREF of matrices with different sizes and ranks.mp4 51MB
- 4. Matrix multiplications/3. Four ways to think about matrix multiplication.mp4 51MB
- 1. Introductions/1. What is linear algebra.mp4 50MB
- 12. Eigendecomposition/16. Code challenge reconstruct a matrix from eigenlayers.mp4 50MB
- 4. Matrix multiplications/17. Multiplication of two symmetric matrices.mp4 50MB
- 12. Eigendecomposition/9. Diagonalization.mp4 50MB
- 6. Matrix spaces/6. Columnleft-null and rownull spaces are orthogonal.mp4 49MB
- 5. Matrix rank/2. Rank concepts, terms, and applications.mp4 49MB
- 9. Matrix inverse/2. Matrix inverse Concept and applications.mp4 49MB
- 12. Eigendecomposition/11. Code challenge eigendecomposition of matrix differences.mp4 49MB
- 12. Eigendecomposition/13. Eigenvectors of repeated eigenvalues.mp4 48MB
- 4. Matrix multiplications/19. Code challenge Fourier transform via matrix multiplication!.mp4 48MB
- 12. Eigendecomposition/8. Eigendecomposition by hand two examples.mp4 47MB
- 14. Quadratic form and definiteness/2. The quadratic form in algebra.mp4 47MB
- 7. Solving systems of equations/8. Matrix spaces after row reduction.mp4 46MB
- 14. Quadratic form and definiteness/11. Proof Eigenvalues and matrix definiteness.mp4 46MB
- 12. Eigendecomposition/19. Generalized eigendecomposition.mp4 45MB
- 4. Matrix multiplications/20. Frobenius dot product.mp4 45MB
- 9. Matrix inverse/10. One-sided inverses in MATLAB.mp4 45MB
- 5. Matrix rank/9. Rank of A^TA and AA^T.mp4 45MB
- 2. Vectors/21. Code challenge dot products with unit vectors.mp4 45MB
- 2. Vectors/13. Code challenge dot product sign and scalar multiplication.mp4 45MB
- 13. Singular value decomposition/13. SVD, matrix inverse, and pseudoinverse.mp4 45MB
- 11. Least-squares for model-fitting in statistics/3. Least-squares via left inverse.mp4 44MB
- 2. Vectors/17. Vector cross product.mp4 44MB
- 10. Projections and orthogonalization/6. Orthogonal matrices.mp4 44MB
- 11. Least-squares for model-fitting in statistics/4. Least-squares via orthogonal projection.mp4 42MB
- 13. Singular value decomposition/14. Condition number of a matrix.mp4 42MB
- 2. Vectors/16. Outer product.mp4 42MB
- 9. Matrix inverse/9. Left inverse and right inverse.mp4 42MB
- 12. Eigendecomposition/12. Eigenvectors of distinct eigenvalues.mp4 42MB
- 2. Vectors/2. Algebraic and geometric interpretations of vectors.mp4 41MB
- 6. Matrix spaces/7. Dimensions of columnrownull spaces.mp4 40MB
- 9. Matrix inverse/4. Inverse of a 2x2 matrix.mp4 39MB
- 2. Vectors/22. Dimensions and fields in linear algebra.mp4 39MB
- 8. Matrix determinant/4. Code challenge determinant of small and large singular matrices.mp4 39MB
- 4. Matrix multiplications/2. Introduction to standard matrix multiplication.mp4 38MB
- 9. Matrix inverse/8. Code challenge inverse of a diagonal matrix.mp4 37MB
- 13. Singular value decomposition/7. SVD and the four subspaces.mp4 37MB
- 10. Projections and orthogonalization/2. Projections in R^2.mp4 37MB
- 4. Matrix multiplications/6. Order-of-operations on matrices.mp4 37MB
- 3. Introduction to matrices/13. Code challenge linearity of trace.mp4 36MB
- 4. Matrix multiplications/4. Code challenge matrix multiplication by layering.mp4 36MB
- 5. Matrix rank/7. Code challenge reduced-rank matrix via multiplication.mp4 34MB
- 11. Least-squares for model-fitting in statistics/6. Model-predicted values and residuals.mp4 34MB
- 4. Matrix multiplications/16. Code challenge symmetry of combined symmetric matrices.mp4 34MB
- 6. Matrix spaces/9. More on Ax=b and Ax=0.mp4 34MB
- 12. Eigendecomposition/5. Code challenge eigenvalues of diagonal and triangular matrices.mp4 34MB
- 8. Matrix determinant/2. Determinant concept and applications.mp4 34MB
- 12. Eigendecomposition/18. Code challenge trace and determinant, eigenvalues sum and product.mp4 33MB
- 2. Vectors/18. Vectors with complex numbers.mp4 33MB
- 3. Introduction to matrices/2. Matrix terminology and dimensionality.mp4 33MB
- 2. Vectors/5. Vector-vector multiplication the dot product.mp4 32MB
- 3. Introduction to matrices/9. Transpose.mp4 31MB
- 14. Quadratic form and definiteness/4. The normalized quadratic form.mp4 31MB
- 14. Quadratic form and definiteness/10. Proof A^TA is always positive (semi)definite.mp4 31MB
- 5. Matrix rank/10. Code challenge rank of multiplied and summed matrices.mp4 30MB
- 1. Introductions/2. Linear algebra applications.mp4 30MB
- 2. Vectors/4. Vector-scalar multiplication.mp4 29MB
- 7. Solving systems of equations/5. Echelon form and pivots.mp4 29MB
- 11. Least-squares for model-fitting in statistics/9. Code challenge Least-squares via QR decomposition.mp4 29MB
- 2. Vectors/24. Subspaces vs. subsets.mp4 29MB
- 13. Singular value decomposition/11. Code challenge When is UV^T valid, what is its norm, and is it orthogonal.mp4 29MB
- 6. Matrix spaces/3. Column space, visualized in MATLAB.mp4 28MB
- 2. Vectors/14. Code challenge is the dot product commutative.mp4 28MB
- 8. Matrix determinant/3. Determinant of a 2x2 matrix.mp4 27MB
- 3. Introduction to matrices/12. Diagonal and trace.mp4 27MB
- 3. Introduction to matrices/6. Matrix addition and subtraction.mp4 27MB
- 1. Introductions/3. How best to learn from this course.mp4 27MB
- 1. Introductions/6. Using the Q&A forum.mp4 27MB
- 2. Vectors/20. Interpreting and creating unit vectors.mp4 27MB
- 2. Vectors/3. Vector addition and subtraction.mp4 26MB
- 3. Introduction to matrices/8. Code challenge is matrix-scalar multiplication a linear operation.mp4 25MB
- 4. Matrix multiplications/12. Additive and multiplicative matrix identities.mp4 25MB
- 14. Quadratic form and definiteness/6. Eigenvectors and the quadratic form surface.mp4 25MB
- 12. Eigendecomposition/15. Eigenlayers of a matrix.mp4 25MB
- 5. Matrix rank/12. Code challenge is this vector in the span of this set.mp4 24MB
- 2. Vectors/8. Vector length.mp4 24MB
- 6. Matrix spaces/4. Row space of a matrix.mp4 23MB
- 2. Vectors/7. Code challenge dot products with matrix columns.mp4 23MB
- 10. Projections and orthogonalization/13. Code challenge A^TA = R^TR.mp4 22MB
- 8. Matrix determinant/7. Find matrix values for a given determinant.mp4 22MB
- 1. Introductions/4. Using MATLAB, Octave, or Python in this course.mp4 21MB
- 7. Solving systems of equations/3. Converting systems of equations to matrix equations.mp4 21MB
- 12. Eigendecomposition/17. Eigendecomposition of singular matrices.mp4 20MB
- 4. Matrix multiplications/18. Code challenge standard and Hadamard multiplication for diagonal matrices.mp4 20MB
- 9. Matrix inverse/13. Code challenge pseudoinverse of invertible matrices.mp4 19MB
- 9. Matrix inverse/3. Computing the inverse in MATLAB.mp4 19MB
- 4. Matrix multiplications/5. Matrix multiplication with a diagonal matrix.mp4 19MB
- 1. Introductions/5. Leaving reviews, course coupons.mp4 18MB
- 8. Matrix determinant/6. Code challenge large matrices with row exchanges.mp4 18MB
- 9. Matrix inverse/11. Proof the inverse is unique.mp4 16MB
- 4. Matrix multiplications/21. What about matrix division.mp4 14MB
- 12. Eigendecomposition/4. Shortcut for eigenvalues of a 2x2 matrix.mp4 13MB
- 2. Vectors/15. Vector Hadamard multiplication.mp4 12MB
- 4. Matrix multiplications/14. Hadamard (element-wise) multiplication.mp4 12MB
- 3. Introduction to matrices/7. Matrix-scalar multiplication.mp4 8MB
- 10. Projections and orthogonalization/10. Matrix inverse via QR decomposition.mp4 7MB
- 3. Introduction to matrices/10. Complex matrices.mp4 7MB
- 14. Quadratic form and definiteness/1.1 linalg_quadformDefinite.zip.zip 396KB
- 2. Vectors/1.1 linalg_vectors.zip.zip 386KB
- 13. Singular value decomposition/1.1 linalg_svd.zip.zip 331KB
- 11. Least-squares for model-fitting in statistics/1.1 linalg_leastsquares.zip.zip 315KB
- 12. Eigendecomposition/1.1 linalg_eig.zip.zip 297KB
- 10. Projections and orthogonalization/1.1 linalg_projorth.zip.zip 246KB
- 9. Matrix inverse/1.1 linalg_inverse.zip.zip 226KB
- 4. Matrix multiplications/1.1 linalg_matrixMult.zip.zip 215KB
- 7. Solving systems of equations/1.1 linalg_systems.zip.zip 211KB
- 6. Matrix spaces/1.1 linalg_matrixSpaces.zip.zip 210KB
- 5. Matrix rank/1.1 linalg_matrixRank.zip.zip 180KB
- 3. Introduction to matrices/1.1 linalg_matrices.zip.zip 166KB
- 8. Matrix determinant/1.1 linalg_matrixDet.pdf.pdf 138KB
- 6. Matrix spaces/5. Null space and left null space of a matrix.mp4.jpg 60KB
- 10. Projections and orthogonalization/8. QR decomposition.mp4.jpg 54KB
- 11. Least-squares for model-fitting in statistics/8. Least-squares application 2.vtt 22KB
- 14. Quadratic form and definiteness/7. Application of the normalized quadratic form PCA.vtt 20KB
- 7. Solving systems of equations/6. Reduced row echelon form.vtt 20KB
- 5. Matrix rank/4. Computing rank theory and practice.vtt 19KB
- 7. Solving systems of equations/4. Gaussian elimination.vtt 18KB
- 2. Vectors/10. Dot product geometry sign and orthogonality.vtt 18KB
- 7. Solving systems of equations/2. Systems of equations algebra and geometry.vtt 18KB
- 2. Vectors/27. Linear independence.vtt 18KB
- 12. Eigendecomposition/3. Finding eigenvalues.vtt 17KB
- 9. Matrix inverse/6. Code challenge Implement the MCA algorithm!!.vtt 17KB
- 2. Vectors/23. Subspaces.vtt 17KB
- 4. Matrix multiplications/7. Matrix-vector multiplication.vtt 17KB
- 13. Singular value decomposition/4. Code challenge SVD vs. eigendecomposition for square symmetric matrices.vtt 17KB
- 12. Eigendecomposition/10. Matrix powers via diagonalization.vtt 16KB
- 14. Quadratic form and definiteness/5. Code challenge Visualize the normalized quadratic form.vtt 16KB
- 9. Matrix inverse/5. The MCA algorithm to compute the inverse.vtt 16KB
- 6. Matrix spaces/5. Null space and left null space of a matrix.vtt 16KB
- 4. Matrix multiplications/11. Code challenge Geometric transformations via matrix multiplications.vtt 16KB
- 8. Matrix determinant/8. Code challenge determinant of shifted matrices.vtt 16KB
- 13. Singular value decomposition/2. Singular value decomposition (SVD).vtt 16KB
- 10. Projections and orthogonalization/12. Code challenge Prove and demonstrate the Sherman-Morrison inverse.vtt 16KB
- 13. Singular value decomposition/8. Spectral theory of matrices.vtt 16KB
- 10. Projections and orthogonalization/9. Code challenge Gram-Schmidt algorithm.vtt 15KB
- 8. Matrix determinant/5. Determinant of a 3x3 matrix.vtt 15KB
- 10. Projections and orthogonalization/7. Gram-Schmidt procedure.vtt 15KB
- 5. Matrix rank/8. Code challenge scalar multiplication and rank.vtt 15KB
- 11. Least-squares for model-fitting in statistics/2. Introduction to least-squares.vtt 15KB
- 12. Eigendecomposition/20. Code challenge GED in small and large matrices.vtt 15KB
- 2. Vectors/6. Dot product properties associative, distributive, commutative.vtt 15KB
- 6. Matrix spaces/2. Column space of a matrix.vtt 14KB
- 9. Matrix inverse/2. Matrix inverse Concept and applications.vtt 14KB
- 13. Singular value decomposition/5. Code challenge U from eigendecomposition of A^TA.vtt 14KB
- 10. Projections and orthogonalization/8. QR decomposition.vtt 14KB
- 10. Projections and orthogonalization/4. Orthogonal and parallel vector components.vtt 14KB
- 13. Singular value decomposition/15. Code challenge Create matrix with desired condition number.vtt 14KB
- 12. Eigendecomposition/2. What are eigenvalues and eigenvectors.vtt 14KB
- 11. Least-squares for model-fitting in statistics/7. Least-squares application 1.vtt 14KB
- 2. Vectors/19. Hermitian transpose (a.k.a. conjugate transpose).vtt 14KB
- 7. Solving systems of equations/7. Code challenge RREF of matrices with different sizes and ranks.vtt 13KB
- 9. Matrix inverse/7. Computing the inverse via row reduction.vtt 13KB
- 4. Matrix multiplications/9. 2D transformation matrices.vtt 13KB
- 6. Matrix spaces/8. Example of the four subspaces.vtt 13KB
- 12. Eigendecomposition/7. Finding eigenvectors.vtt 13KB
- 4. Matrix multiplications/13. Additive and multiplicative symmetric matrices.vtt 13KB
- 4. Matrix multiplications/3. Four ways to think about matrix multiplication.vtt 13KB
- 10. Projections and orthogonalization/6. Orthogonal matrices.vtt 13KB
- 12. Eigendecomposition/14. Eigendecomposition of symmetric matrices.vtt 13KB
- 2. Vectors/13. Code challenge dot product sign and scalar multiplication.vtt 13KB
- 13. Singular value decomposition/9. SVD for low-rank approximations.vtt 13KB
- 11. Least-squares for model-fitting in statistics/5. Least-squares via row-reduction.vtt 13KB
- 3. Introduction to matrices/4. A zoo of matrices.vtt 13KB
- 13. Singular value decomposition/10. Convert singular values to percent variance.vtt 13KB
- 2. Vectors/28. Basis.vtt 13KB
- 10. Projections and orthogonalization/5. Code challenge decompose vector to orthogonal components.vtt 13KB
- 5. Matrix rank/5. Rank of added and multiplied matrices.vtt 13KB
- 13. Singular value decomposition/6. Code challenge A^TA, Av, and singular vectors.vtt 13KB
- 2. Vectors/25. Span.vtt 13KB
- 14. Quadratic form and definiteness/3. The quadratic form in geometry.vtt 12KB
- 5. Matrix rank/11. Making a matrix full-rank by shifting.vtt 12KB
- 5. Matrix rank/2. Rank concepts, terms, and applications.vtt 12KB
- 4. Matrix multiplications/10. Code challenge Pure and impure rotation matrices.vtt 12KB
- 14. Quadratic form and definiteness/2. The quadratic form in algebra.vtt 12KB
- 6. Matrix spaces/6. Columnleft-null and rownull spaces are orthogonal.vtt 12KB
- 12. Eigendecomposition/11. Code challenge eigendecomposition of matrix differences.vtt 12KB
- 2. Vectors/21. Code challenge dot products with unit vectors.vtt 12KB
- 12. Eigendecomposition/16. Code challenge reconstruct a matrix from eigenlayers.vtt 12KB
- 4. Matrix multiplications/19. Code challenge Fourier transform via matrix multiplication!.vtt 12KB
- 12. Eigendecomposition/13. Eigenvectors of repeated eigenvalues.vtt 12KB
- 5. Matrix rank/9. Rank of A^TA and AA^T.vtt 12KB
- 10. Projections and orthogonalization/3. Projections in R^N.vtt 11KB
- 12. Eigendecomposition/9. Diagonalization.vtt 11KB
- 4. Matrix multiplications/17. Multiplication of two symmetric matrices.vtt 11KB
- 2. Vectors/2. Algebraic and geometric interpretations of vectors.vtt 11KB
- 12. Eigendecomposition/8. Eigendecomposition by hand two examples.vtt 11KB
- 12. Eigendecomposition/6. Code challenge eigenvalues of random matrices.vtt 11KB
- 14. Quadratic form and definiteness/9. Matrix definiteness, geometry, and eigenvalues.vtt 11KB
- 14. Quadratic form and definiteness/8. Quadratic form of generalized eigendecomposition.vtt 11KB
- 11. Least-squares for model-fitting in statistics/3. Least-squares via left inverse.vtt 11KB
- 7. Solving systems of equations/8. Matrix spaces after row reduction.vtt 11KB
- 9. Matrix inverse/9. Left inverse and right inverse.vtt 11KB
- 8. Matrix determinant/4. Code challenge determinant of small and large singular matrices.vtt 10KB
- 13. Singular value decomposition/13. SVD, matrix inverse, and pseudoinverse.vtt 10KB
- 12. Eigendecomposition/19. Generalized eigendecomposition.vtt 10KB
- 11. Least-squares for model-fitting in statistics/4. Least-squares via orthogonal projection.vtt 10KB
- 3. Introduction to matrices/13. Code challenge linearity of trace.vtt 10KB
- 13. Singular value decomposition/14. Condition number of a matrix.vtt 10KB
- 12. Eigendecomposition/18. Code challenge trace and determinant, eigenvalues sum and product.vtt 10KB
- 9. Matrix inverse/12. Pseudo-inverse, part 1.vtt 10KB
- 10. Projections and orthogonalization/2. Projections in R^2.vtt 10KB
- 2. Vectors/16. Outer product.vtt 10KB
- 9. Matrix inverse/8. Code challenge inverse of a diagonal matrix.vtt 9KB
- 12. Eigendecomposition/5. Code challenge eigenvalues of diagonal and triangular matrices.vtt 9KB
- 4. Matrix multiplications/20. Frobenius dot product.vtt 9KB
- 4. Matrix multiplications/2. Introduction to standard matrix multiplication.vtt 9KB
- 4. Matrix multiplications/16. Code challenge symmetry of combined symmetric matrices.vtt 9KB
- 4. Matrix multiplications/4. Code challenge matrix multiplication by layering.vtt 9KB
- 2. Vectors/18. Vectors with complex numbers.vtt 9KB
- 1. Introductions/1. What is linear algebra.vtt 9KB
- 6. Matrix spaces/7. Dimensions of columnrownull spaces.vtt 9KB
- 10. Projections and orthogonalization/11. Code challenge Inverse via QR.vtt 9KB
- 12. Eigendecomposition/12. Eigenvectors of distinct eigenvalues.vtt 9KB
- 3. Introduction to matrices/2. Matrix terminology and dimensionality.vtt 9KB
- 9. Matrix inverse/4. Inverse of a 2x2 matrix.vtt 9KB
- 14. Quadratic form and definiteness/11. Proof Eigenvalues and matrix definiteness.vtt 9KB
- 2. Vectors/22. Dimensions and fields in linear algebra.vtt 9KB
- 5. Matrix rank/7. Code challenge reduced-rank matrix via multiplication.vtt 9KB
- 7. Solving systems of equations/5. Echelon form and pivots.vtt 8KB
- 2. Vectors/5. Vector-vector multiplication the dot product.vtt 8KB
- 2. Vectors/14. Code challenge is the dot product commutative.vtt 8KB
- 11. Least-squares for model-fitting in statistics/9. Code challenge Least-squares via QR decomposition.vtt 8KB
- 6. Matrix spaces/9. More on Ax=b and Ax=0.vtt 8KB
- 8. Matrix determinant/3. Determinant of a 2x2 matrix.vtt 8KB
- 13. Singular value decomposition/7. SVD and the four subspaces.vtt 8KB
- 5. Matrix rank/12. Code challenge is this vector in the span of this set.vtt 8KB
- 2. Vectors/7. Code challenge dot products with matrix columns.vtt 8KB
- 14. Quadratic form and definiteness/10. Proof A^TA is always positive (semi)definite.vtt 8KB
- 11. Least-squares for model-fitting in statistics/6. Model-predicted values and residuals.vtt 8KB
- 2. Vectors/4. Vector-scalar multiplication.vtt 8KB
- 5. Matrix rank/10. Code challenge rank of multiplied and summed matrices.vtt 8KB
- 2. Vectors/17. Vector cross product.vtt 8KB
- 3. Introduction to matrices/9. Transpose.vtt 8KB
- 9. Matrix inverse/10. One-sided inverses in MATLAB.vtt 7KB
- 4. Matrix multiplications/6. Order-of-operations on matrices.vtt 7KB
- 14. Quadratic form and definiteness/4. The normalized quadratic form.vtt 7KB
- 8. Matrix determinant/2. Determinant concept and applications.vtt 7KB
- 13. Singular value decomposition/11. Code challenge When is UV^T valid, what is its norm, and is it orthogonal.vtt 7KB
- 2. Vectors/3. Vector addition and subtraction.vtt 7KB
- 1. Introductions/2. Linear algebra applications.vtt 7KB
- 3. Introduction to matrices/6. Matrix addition and subtraction.vtt 7KB
- 2. Vectors/8. Vector length.vtt 7KB
- 3. Introduction to matrices/12. Diagonal and trace.vtt 7KB
- 1. Introductions/6. Using the Q&A forum.vtt 7KB
- 12. Eigendecomposition/15. Eigenlayers of a matrix.vtt 6KB
- 3. Introduction to matrices/8. Code challenge is matrix-scalar multiplication a linear operation.vtt 6KB
- 2. Vectors/24. Subspaces vs. subsets.vtt 6KB
- 2. Vectors/20. Interpreting and creating unit vectors.vtt 6KB
- 8. Matrix determinant/7. Find matrix values for a given determinant.vtt 6KB
- 4. Matrix multiplications/12. Additive and multiplicative matrix identities.vtt 6KB
- 4. Matrix multiplications/18. Code challenge standard and Hadamard multiplication for diagonal matrices.vtt 6KB
- 8. Matrix determinant/6. Code challenge large matrices with row exchanges.vtt 6KB
- 12. Eigendecomposition/17. Eigendecomposition of singular matrices.vtt 5KB
- 1. Introductions/3. How best to learn from this course.vtt 5KB
- 7. Solving systems of equations/3. Converting systems of equations to matrix equations.vtt 5KB
- 9. Matrix inverse/13. Code challenge pseudoinverse of invertible matrices.vtt 5KB
- 4. Matrix multiplications/21. What about matrix division.vtt 5KB
- 10. Projections and orthogonalization/13. Code challenge A^TA = R^TR.vtt 5KB
- 6. Matrix spaces/4. Row space of a matrix.vtt 5KB
- 1. Introductions/4. Using MATLAB, Octave, or Python in this course.vtt 5KB
- 4. Matrix multiplications/5. Matrix multiplication with a diagonal matrix.vtt 4KB
- 6. Matrix spaces/3. Column space, visualized in MATLAB.vtt 4KB
- 14. Quadratic form and definiteness/6. Eigenvectors and the quadratic form surface.vtt 4KB
- 9. Matrix inverse/3. Computing the inverse in MATLAB.vtt 4KB
- 9. Matrix inverse/11. Proof the inverse is unique.vtt 3KB
- 12. Eigendecomposition/4. Shortcut for eigenvalues of a 2x2 matrix.vtt 3KB
- 4. Matrix multiplications/14. Hadamard (element-wise) multiplication.vtt 3KB
- 1. Introductions/5. Leaving reviews, course coupons.vtt 3KB
- 2. Vectors/15. Vector Hadamard multiplication.vtt 3KB
- 15. Discount coupons for related courses/1. Bonus Links to related courses.html 2KB
- 3. Introduction to matrices/10. Complex matrices.vtt 2KB
- 10. Projections and orthogonalization/10. Matrix inverse via QR decomposition.vtt 2KB
- 3. Introduction to matrices/7. Matrix-scalar multiplication.vtt 2KB
- 6. Matrix spaces/5. Null space and left null space of a matrix.txt 250B
- 10. Projections and orthogonalization/4. Orthogonal and parallel vector components.txt 249B
- 10. Projections and orthogonalization/8. QR decomposition.txt 224B
- 13. Singular value decomposition/12. Singular values of an orthogonal matrix.html 144B
- 13. Singular value decomposition/3. Are these two expressions equal.html 144B
- 2. Vectors/11. Vector orthogonality.html 144B
- 2. Vectors/12. Relative vector angles.html 144B
- 2. Vectors/26. In the span.html 144B
- 2. Vectors/9. Vector length in MATLAB.html 144B
- 3. Introduction to matrices/11. Addition, equality, and transpose.html 144B
- 3. Introduction to matrices/3. Matrix sizes and dimensionality.html 144B
- 3. Introduction to matrices/5. Can the matrices be concatenated.html 144B
- 4. Matrix multiplications/15. Matrix operation equality.html 144B
- 4. Matrix multiplications/8. Find the missing value!.html 144B
- 5. Matrix rank/3. Maximum possible rank..html 144B
- 5. Matrix rank/6. What's the maximum possible rank.html 144B
- 4. Matrix multiplications/1. Exercises + code.html 87B
- 11. Least-squares for model-fitting in statistics/1. Exercises + code.html 86B
- 5. Matrix rank/1. Exercises + code.html 85B
- 9. Matrix inverse/1. Exercises + code.html 85B
- 2. Vectors/1. Exercises + code.html 80B
- 10. Projections and orthogonalization/1. Exercises + code.html 76B
- 3. Introduction to matrices/1. Exercises + code.html 75B
- 14. Quadratic form and definiteness/1. Exercises + code.html 55B
- 8. Matrix determinant/1. Exercises.html 52B
- [GigaCourse.com].url 49B
- 7. Solving systems of equations/1. Exercises + code.html 40B
- 6. Matrix spaces/1. Exercises + code.html 36B
- 12. Eigendecomposition/1. Exercises + code.html 33B
- 13. Singular value decomposition/1. Exercises + code.html 26B