[] Udemy - Advanced AI Deep Reinforcement Learning in Python
- 收录时间:2020-04-22 01:12:36
- 文件大小:4GB
- 下载次数:13
- 最近下载:2020-10-29 07:58:29
- 磁力链接:
-
文件列表
- 6. Deep Q-Learning/7. Deep Q-Learning in Tensorflow for Breakout.srt 235MB
- 6. Deep Q-Learning/7. Deep Q-Learning in Tensorflow for Breakout.mp4 235MB
- 6. Deep Q-Learning/8. Deep Q-Learning in Theano for Breakout.srt 234MB
- 6. Deep Q-Learning/8. Deep Q-Learning in Theano for Breakout.mp4 234MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/6. RBF Neural Networks.srt 186MB
- 9. Appendix FAQ/2. Windows-Focused Environment Setup 2018.mp4 186MB
- 7. A3C/5. A3C - Code pt 4.srt 184MB
- 7. A3C/5. A3C - Code pt 4.mp4 184MB
- 8. Theano and Tensorflow Basics Review/4. (Review) Tensorflow Neural Network in Code.mp4 97MB
- 8. Theano and Tensorflow Basics Review/1. (Review) Theano Basics.srt 93MB
- 8. Theano and Tensorflow Basics Review/1. (Review) Theano Basics.mp4 93MB
- 8. Theano and Tensorflow Basics Review/2. (Review) Theano Neural Network in Code.srt 87MB
- 8. Theano and Tensorflow Basics Review/2. (Review) Theano Neural Network in Code.mp4 87MB
- 7. A3C/4. A3C - Code pt 3.srt 85MB
- 7. A3C/4. A3C - Code pt 3.mp4 85MB
- 8. Theano and Tensorflow Basics Review/3. (Review) Tensorflow Basics.srt 81MB
- 8. Theano and Tensorflow Basics Review/3. (Review) Tensorflow Basics.mp4 81MB
- 9. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.mp4 78MB
- 7. A3C/1. A3C - Theory and Outline.mp4 72MB
- 7. A3C/3. A3C - Code pt 2.mp4 58MB
- 7. A3C/2. A3C - Code pt 1 (Warmup).mp4 50MB
- 9. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 44MB
- 5. Policy Gradients/7. Mountain Car Continuous Tensorflow.srt 40MB
- 9. Appendix FAQ/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 39MB
- 9. Appendix FAQ/13. BONUS Where to get Udemy coupons and FREE deep learning material.mp4 38MB
- 9. Appendix FAQ/12. What order should I take your courses in (part 2).srt 38MB
- 9. Appendix FAQ/12. What order should I take your courses in (part 2).mp4 38MB
- 9. Appendix FAQ/11. What order should I take your courses in (part 1).mp4 29MB
- 6. Deep Q-Learning/6. Pseudocode and Replay Memory.mp4 28MB
- 9. Appendix FAQ/4. How to Code by Yourself (part 1).mp4 25MB
- 5. Policy Gradients/9. Mountain Car Continuous Theano (v2).mp4 22MB
- 5. Policy Gradients/7. Mountain Car Continuous Tensorflow.mp4 20MB
- 5. Policy Gradients/6. Mountain Car Continuous Theano.mp4 19MB
- 1. Introduction and Logistics/4. Tensorflow or Theano - Your Choice!.mp4 19MB
- 5. Policy Gradients/8. Mountain Car Continuous Tensorflow (v2).srt 19MB
- 5. Policy Gradients/8. Mountain Car Continuous Tensorflow (v2).mp4 19MB
- 2. Background Review/5. Review of Temporal Difference Learning.mp4 19MB
- 9. Appendix FAQ/6. How to Succeed in this Course (Long Version).mp4 18MB
- 5. Policy Gradients/2. Policy Gradient in TensorFlow for CartPole.mp4 18MB
- 5. Policy Gradients/1. Policy Gradient Methods.mp4 18MB
- 9. Appendix FAQ/10. Is Theano Dead.mp4 18MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/6. RBF Neural Networks.mp4 17MB
- 1. Introduction and Logistics/1. Introduction and Outline.mp4 16MB
- 4. TD Lambda/1. N-Step Methods.mp4 16MB
- 6. Deep Q-Learning/3. Deep Q-Learning in Tensorflow for CartPole.mp4 15MB
- 9. Appendix FAQ/5. How to Code by Yourself (part 2).mp4 15MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/5. CartPole with Bins (Code).mp4 15MB
- 6. Deep Q-Learning/2. Deep Q-Learning Techniques.mp4 14MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/7. RBF Networks with Mountain Car (Code).mp4 14MB
- 6. Deep Q-Learning/4. Deep Q-Learning in Theano for CartPole.mp4 14MB
- 5. Policy Gradients/3. Policy Gradient in Theano for CartPole.mp4 13MB
- 2. Background Review/2. Review of Markov Decision Processes.mp4 12MB
- 4. TD Lambda/3. TD Lambda.mp4 12MB
- 2. Background Review/7. Review of Deep Learning.mp4 11MB
- 6. Deep Q-Learning/10. Deep Q-Learning Section Summary.mp4 10MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/2. Random Search.mp4 10MB
- 4. TD Lambda/2. N-Step in Code.mp4 9MB
- 7. A3C/7. Course Summary.mp4 9MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/9. RBF Networks with CartPole (Code).mp4 9MB
- 7. A3C/6. A3C - Section Summary.srt 9MB
- 7. A3C/6. A3C - Section Summary.mp4 9MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/1. OpenAI Gym Tutorial.mp4 9MB
- 6. Deep Q-Learning/5. Additional Implementation Details for Atari.mp4 9MB
- 9. Appendix FAQ/9. Python 2 vs Python 3.mp4 8MB
- 4. TD Lambda/4. TD Lambda in Code.mp4 8MB
- 6. Deep Q-Learning/9. Partially Observable MDPs.srt 8MB
- 6. Deep Q-Learning/9. Partially Observable MDPs.mp4 8MB
- 5. Policy Gradients/4. Continuous Action Spaces.mp4 7MB
- 2. Background Review/3. Review of Dynamic Programming.mp4 7MB
- 5. Policy Gradients/5. Mountain Car Continuous Specifics.mp4 7MB
- 2. Background Review/4. Review of Monte Carlo Methods.mp4 6MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/4. CartPole with Bins (Theory).mp4 6MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/12. Plugging in a Neural Network.mp4 6MB
- 6. Deep Q-Learning/1. Deep Q-Learning Intro.mp4 6MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/10. Theano Warmup.mp4 6MB
- 9. Appendix FAQ/1. What is the Appendix.mp4 5MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/1. OpenAI Gym Tutorial.srt 5MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/13. OpenAI Gym Section Summary.mp4 5MB
- 1. Introduction and Logistics/2. Where to get the Code.srt 5MB
- 1. Introduction and Logistics/2. Where to get the Code.mp4 5MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/11. Tensorflow Warmup.mp4 5MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/3. Saving a Video.mp4 5MB
- 2. Background Review/1. Review Intro.mp4 4MB
- 2. Background Review/6. Review of Approximation Methods for Reinforcement Learning.mp4 4MB
- 4. TD Lambda/5. TD Lambda Summary.mp4 4MB
- 5. Policy Gradients/10. Policy Gradient Section Summary.mp4 3MB
- 1. Introduction and Logistics/3. How to Succeed in this Course.mp4 3MB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/8. RBF Networks with CartPole (Theory).mp4 3MB
- 9. Appendix FAQ/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt 32KB
- 9. Appendix FAQ/4. How to Code by Yourself (part 1).srt 23KB
- 7. A3C/1. A3C - Theory and Outline.srt 20KB
- 9. Appendix FAQ/2. Windows-Focused Environment Setup 2018.srt 20KB
- 9. Appendix FAQ/11. What order should I take your courses in (part 1).srt 16KB
- 5. Policy Gradients/1. Policy Gradient Methods.srt 15KB
- 9. Appendix FAQ/6. How to Succeed in this Course (Long Version).srt 15KB
- 1. Introduction and Logistics/1. Introduction and Outline.srt 14KB
- 9. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt 14KB
- 9. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.srt 14KB
- 9. Appendix FAQ/5. How to Code by Yourself (part 2).srt 13KB
- 9. Appendix FAQ/10. Is Theano Dead.srt 13KB
- 6. Deep Q-Learning/2. Deep Q-Learning Techniques.srt 12KB
- 2. Background Review/2. Review of Markov Decision Processes.srt 10KB
- 5. Policy Gradients/6. Mountain Car Continuous Theano.srt 10KB
- 4. TD Lambda/3. TD Lambda.srt 9KB
- 2. Background Review/7. Review of Deep Learning.srt 9KB
- 5. Policy Gradients/2. Policy Gradient in TensorFlow for CartPole.srt 9KB
- 5. Policy Gradients/9. Mountain Car Continuous Theano (v2).srt 8KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/5. CartPole with Bins (Code).srt 8KB
- 9. Appendix FAQ/13. BONUS Where to get Udemy coupons and FREE deep learning material.srt 8KB
- 6. Deep Q-Learning/6. Pseudocode and Replay Memory.srt 8KB
- 7. A3C/2. A3C - Code pt 1 (Warmup).srt 8KB
- 6. Deep Q-Learning/5. Additional Implementation Details for Atari.srt 7KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/2. Random Search.srt 7KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/7. RBF Networks with Mountain Car (Code).srt 6KB
- 9. Appendix FAQ/9. Python 2 vs Python 3.srt 6KB
- 6. Deep Q-Learning/10. Deep Q-Learning Section Summary.srt 6KB
- 7. A3C/7. Course Summary.srt 6KB
- 2. Background Review/5. Review of Temporal Difference Learning.srt 6KB
- 6. Deep Q-Learning/3. Deep Q-Learning in Tensorflow for CartPole.srt 6KB
- 8. Theano and Tensorflow Basics Review/4. (Review) Tensorflow Neural Network in Code.srt 6KB
- 6. Deep Q-Learning/4. Deep Q-Learning in Theano for CartPole.srt 5KB
- 1. Introduction and Logistics/4. Tensorflow or Theano - Your Choice!.srt 5KB
- 2. Background Review/3. Review of Dynamic Programming.srt 5KB
- 5. Policy Gradients/4. Continuous Action Spaces.srt 5KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/4. CartPole with Bins (Theory).srt 5KB
- 5. Policy Gradients/5. Mountain Car Continuous Specifics.srt 5KB
- 2. Background Review/4. Review of Monte Carlo Methods.srt 5KB
- 6. Deep Q-Learning/1. Deep Q-Learning Intro.srt 5KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/12. Plugging in a Neural Network.srt 5KB
- 5. Policy Gradients/3. Policy Gradient in Theano for CartPole.srt 5KB
- 4. TD Lambda/2. N-Step in Code.srt 4KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/13. OpenAI Gym Section Summary.srt 4KB
- 1. Introduction and Logistics/3. How to Succeed in this Course.srt 4KB
- 4. TD Lambda/1. N-Step Methods.srt 4KB
- 9. Appendix FAQ/1. What is the Appendix.srt 4KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/9. RBF Networks with CartPole (Code).srt 4KB
- 2. Background Review/1. Review Intro.srt 4KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/10. Theano Warmup.srt 3KB
- 4. TD Lambda/4. TD Lambda in Code.srt 3KB
- 4. TD Lambda/5. TD Lambda Summary.srt 3KB
- 2. Background Review/6. Review of Approximation Methods for Reinforcement Learning.srt 3KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/11. Tensorflow Warmup.srt 2KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/8. RBF Networks with CartPole (Theory).srt 2KB
- 3. OpenAI Gym and Basic Reinforcement Learning Techniques/3. Saving a Video.srt 2KB
- 5. Policy Gradients/10. Policy Gradient Section Summary.srt 2KB
- [Tutorialsplanet.NET].url 128B
- 7. A3C/3. A3C - Code pt 2.srt 0B