[] Udemy - Machine Learning Regression Masterclass in Python 收录时间:2021-07-09 17:57:16 文件大小:5GB 下载次数:1 最近下载:2021-07-09 17:57:15 磁力链接: magnet:?xt=urn:btih:51b2f6656d81255a70a8ba7a36d720bc50df2727 立即下载 复制链接 文件列表 4. REGRESSION KEY PERFORMANCE INDICATORS/4. Bias Variance Tradeoff.mp4 190MB 6. MULTIPLE LINEAR REGRESSION/5. Project #1 - Model Training and Evaluation.mp4 158MB 3. SIMPLE LINEAR REGRESSION/8. Project #1 - Test Model.mp4 144MB 1. INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]/4. ML vs. DL vs. AI.mp4 144MB 9. LASSO AND RIDGE REGRESSION/5. Ridge and Lasso in Practice.mp4 142MB 6. MULTIPLE LINEAR REGRESSION/6. Project #1 - Model Results Evaluation.mp4 136MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/12. Evaluate the Model.mp4 132MB 6. MULTIPLE LINEAR REGRESSION/12. Project #2 - Retraining Model.mp4 129MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/9. Project - Visualize Dataset.mp4 129MB 4. REGRESSION KEY PERFORMANCE INDICATORS/2. Regression Metric Part 1.mp4 128MB 3. SIMPLE LINEAR REGRESSION/4. Project #1 - Overview.mp4 127MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/11. Train the Model.mp4 122MB 6. MULTIPLE LINEAR REGRESSION/9. Project #2 - Data Visualization.mp4 118MB 3. SIMPLE LINEAR REGRESSION/2. Simple Linear Regression Intuition.mp4 98MB 7. LOGISTIC REGRESSION/7. Project #2 - Training Testing.mp4 93MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/5. Theory Part 4.mp4 91MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/14. Model Improvement with more features.mp4 91MB 9. LASSO AND RIDGE REGRESSION/2. Ridge Lasso Part 1.mp4 89MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/8. Project - Load Dataset.mp4 87MB 7. LOGISTIC REGRESSION/8. Model Testing Visualization.mp4 86MB 5. POLYNOMIAL REGRESSION/5. Poly Regression - Linear Trainingtesting.mp4 79MB 6. MULTIPLE LINEAR REGRESSION/11. Project #2 - Model Evaluation.mp4 79MB 3. SIMPLE LINEAR REGRESSION/14. Project #2 - Model Testing.mp4 78MB 6. MULTIPLE LINEAR REGRESSION/4. Project #1 - Data Visualization.mp4 78MB 7. LOGISTIC REGRESSION/5. Project #2 - Visualization.mp4 77MB 4. REGRESSION KEY PERFORMANCE INDICATORS/3. Regression Metric Part 2.mp4 76MB 5. POLYNOMIAL REGRESSION/3. Poly Regression - Salary Load Data.mp4 74MB 3. SIMPLE LINEAR REGRESSION/6. Project #1 - Divide Data into Training and Testing.mp4 74MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/13. Multiple Linear regression.mp4 72MB 3. SIMPLE LINEAR REGRESSION/5. Project #1 - Data Visualization.mp4 71MB 7. LOGISTIC REGRESSION/3. Confusion Matrix.mp4 71MB 6. MULTIPLE LINEAR REGRESSION/8. Project #2 - Load Data.mp4 70MB 9. LASSO AND RIDGE REGRESSION/3. Ridge Lasso Part 2.mp4 68MB 5. POLYNOMIAL REGRESSION/2. Polynomial Regression - Intuition.mp4 67MB 7. LOGISTIC REGRESSION/2. Logistic Regression Intuition.mp4 64MB 5. POLYNOMIAL REGRESSION/4. Poly Regression - Visualize Data.mp4 64MB 5. POLYNOMIAL REGRESSION/11. Poly Regression - Economies Poly.mp4 63MB 1. INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]/1. Course Welcome Message.mp4 61MB 3. SIMPLE LINEAR REGRESSION/3. Least Squares.mp4 60MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/10. Scale the Data.mp4 59MB 6. MULTIPLE LINEAR REGRESSION/3. Project #1 - Load Data and Libraries.mp4 57MB 5. POLYNOMIAL REGRESSION/10. Poly Regression - Economies Linear -2.mp4 56MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/4. Theory Part 3.mp4 56MB 5. POLYNOMIAL REGRESSION/6. Poly Regression - Poly Part 1.mp4 55MB 6. MULTIPLE LINEAR REGRESSION/10. Project #2 - Train the Model.mp4 53MB 1. INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]/3. Course Overview.mp4 53MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/6. Theory Part 5.mp4 50MB 3. SIMPLE LINEAR REGRESSION/7. Project #1 - Train Model.mp4 50MB 5. POLYNOMIAL REGRESSION/9. Poly Regression - Economies Linear -1.mp4 49MB 3. SIMPLE LINEAR REGRESSION/11. Project #2 - Visualization.mp4 48MB 2. ANACONDA AND JUPYTER INSTALLATION/1. Download and Set up Anaconda.mp4 45MB 7. LOGISTIC REGRESSION/6. Project #2 - Data Cleaning.mp4 44MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/2. Theory Part 1.mp4 40MB 7. LOGISTIC REGRESSION/4. Project #2 - Data Import.mp4 37MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/7. Theory Part 6.mp4 36MB 5. POLYNOMIAL REGRESSION/7. Poly Regression - Poly Part 2.mp4 36MB 3. SIMPLE LINEAR REGRESSION/10. Project #2 - Solution.mp4 34MB 9. LASSO AND RIDGE REGRESSION/4. Ridge Lasso Part 3.mp4 33MB 5. POLYNOMIAL REGRESSION/8. Poly Regression Project 2 Overview.mp4 32MB 2. ANACONDA AND JUPYTER INSTALLATION/2. What is Jupiter Notebook.mp4 32MB 3. SIMPLE LINEAR REGRESSION/12. Project #2 - Prepare Training and Testing Data.mp4 32MB 3. SIMPLE LINEAR REGRESSION/13. Project #2 - Test Model.mp4 32MB 7. LOGISTIC REGRESSION/1. Logistic Regression Intro.mp4 30MB 3. SIMPLE LINEAR REGRESSION/9. Project #2 - Overview.mp4 30MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/3. Theory Part 2.mp4 28MB 3. SIMPLE LINEAR REGRESSION/1. Intro to Simple Linear Regression.mp4 27MB 6. MULTIPLE LINEAR REGRESSION/7. Project #2 - Overview.mp4 26MB 1. INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]/3.1 ML Regression Course Package.zip.zip 25MB 1. INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]/2. Updates on Udemy Reviews.mp4 23MB 9. LASSO AND RIDGE REGRESSION/1. Ridge and Lasso Intro.mp4 23MB 6. MULTIPLE LINEAR REGRESSION/2. Multiple Linear Regression Overview.mp4 21MB 6. MULTIPLE LINEAR REGRESSION/1. Multiple Linear Regression Intro.mp4 20MB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/1. Artificial Neural Networks Intro.mp4 16MB 5. POLYNOMIAL REGRESSION/1. Polynomial Regression Intro.mp4 15MB 4. REGRESSION KEY PERFORMANCE INDICATORS/1. Regression Metrics Intro.mp4 13MB 4. REGRESSION KEY PERFORMANCE INDICATORS/4. Bias Variance Tradeoff.vtt 29KB 6. MULTIPLE LINEAR REGRESSION/5. Project #1 - Model Training and Evaluation.vtt 25KB 3. SIMPLE LINEAR REGRESSION/8. Project #1 - Test Model.vtt 24KB 3. SIMPLE LINEAR REGRESSION/4. Project #1 - Overview.vtt 24KB 4. REGRESSION KEY PERFORMANCE INDICATORS/2. Regression Metric Part 1.vtt 21KB 1. INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]/4. ML vs. DL vs. AI.vtt 21KB 6. MULTIPLE LINEAR REGRESSION/6. Project #1 - Model Results Evaluation.vtt 21KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/12. Evaluate the Model.vtt 20KB 9. LASSO AND RIDGE REGRESSION/5. Ridge and Lasso in Practice.vtt 18KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/11. Train the Model.vtt 18KB 6. MULTIPLE LINEAR REGRESSION/12. Project #2 - Retraining Model.vtt 17KB 6. MULTIPLE LINEAR REGRESSION/9. Project #2 - Data Visualization.vtt 16KB 3. SIMPLE LINEAR REGRESSION/2. Simple Linear Regression Intuition.vtt 16KB 7. LOGISTIC REGRESSION/3. Confusion Matrix.vtt 16KB 7. LOGISTIC REGRESSION/7. Project #2 - Training Testing.vtt 16KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/9. Project - Visualize Dataset.vtt 16KB 3. SIMPLE LINEAR REGRESSION/5. Project #1 - Data Visualization.vtt 14KB 3. SIMPLE LINEAR REGRESSION/6. Project #1 - Divide Data into Training and Testing.vtt 14KB 5. POLYNOMIAL REGRESSION/5. Poly Regression - Linear Trainingtesting.vtt 14KB 7. LOGISTIC REGRESSION/5. Project #2 - Visualization.vtt 14KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/5. Theory Part 4.vtt 13KB 3. SIMPLE LINEAR REGRESSION/14. Project #2 - Model Testing.vtt 13KB 5. POLYNOMIAL REGRESSION/3. Poly Regression - Salary Load Data.vtt 13KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/8. Project - Load Dataset.vtt 13KB 5. POLYNOMIAL REGRESSION/2. Polynomial Regression - Intuition.vtt 13KB 7. LOGISTIC REGRESSION/8. Model Testing Visualization.vtt 13KB 6. MULTIPLE LINEAR REGRESSION/4. Project #1 - Data Visualization.vtt 13KB 9. LASSO AND RIDGE REGRESSION/2. Ridge Lasso Part 1.vtt 12KB 6. MULTIPLE LINEAR REGRESSION/11. Project #2 - Model Evaluation.vtt 12KB 4. REGRESSION KEY PERFORMANCE INDICATORS/3. Regression Metric Part 2.vtt 12KB 5. POLYNOMIAL REGRESSION/4. Poly Regression - Visualize Data.vtt 12KB 1. INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]/3. Course Overview.vtt 12KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/14. Model Improvement with more features.vtt 12KB 7. LOGISTIC REGRESSION/2. Logistic Regression Intuition.vtt 11KB 5. POLYNOMIAL REGRESSION/11. Poly Regression - Economies Poly.vtt 10KB 9. LASSO AND RIDGE REGRESSION/3. Ridge Lasso Part 2.vtt 10KB 3. SIMPLE LINEAR REGRESSION/7. Project #1 - Train Model.vtt 10KB 6. MULTIPLE LINEAR REGRESSION/8. Project #2 - Load Data.vtt 10KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/13. Multiple Linear regression.vtt 10KB 6. MULTIPLE LINEAR REGRESSION/10. Project #2 - Train the Model.vtt 10KB 5. POLYNOMIAL REGRESSION/10. Poly Regression - Economies Linear -2.vtt 10KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/4. Theory Part 3.vtt 10KB 3. SIMPLE LINEAR REGRESSION/3. Least Squares.vtt 9KB 5. POLYNOMIAL REGRESSION/6. Poly Regression - Poly Part 1.vtt 9KB 6. MULTIPLE LINEAR REGRESSION/3. Project #1 - Load Data and Libraries.vtt 9KB 3. SIMPLE LINEAR REGRESSION/11. Project #2 - Visualization.vtt 9KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/6. Theory Part 5.vtt 9KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/10. Scale the Data.vtt 9KB 5. POLYNOMIAL REGRESSION/9. Poly Regression - Economies Linear -1.vtt 8KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/2. Theory Part 1.vtt 7KB 7. LOGISTIC REGRESSION/6. Project #2 - Data Cleaning.vtt 7KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/7. Theory Part 6.vtt 7KB 5. POLYNOMIAL REGRESSION/7. Poly Regression - Poly Part 2.vtt 6KB 7. LOGISTIC REGRESSION/4. Project #2 - Data Import.vtt 6KB 3. SIMPLE LINEAR REGRESSION/12. Project #2 - Prepare Training and Testing Data.vtt 6KB 3. SIMPLE LINEAR REGRESSION/13. Project #2 - Test Model.vtt 6KB 2. ANACONDA AND JUPYTER INSTALLATION/1. Download and Set up Anaconda.vtt 6KB 3. SIMPLE LINEAR REGRESSION/10. Project #2 - Solution.vtt 5KB 9. LASSO AND RIDGE REGRESSION/4. Ridge Lasso Part 3.vtt 5KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/3. Theory Part 2.vtt 5KB 5. POLYNOMIAL REGRESSION/8. Poly Regression Project 2 Overview.vtt 5KB 2. ANACONDA AND JUPYTER INSTALLATION/2. What is Jupiter Notebook.vtt 5KB 3. SIMPLE LINEAR REGRESSION/9. Project #2 - Overview.vtt 4KB 6. MULTIPLE LINEAR REGRESSION/7. Project #2 - Overview.vtt 4KB 6. MULTIPLE LINEAR REGRESSION/2. Multiple Linear Regression Overview.vtt 4KB 1. INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]/1. Course Welcome Message.vtt 3KB 7. LOGISTIC REGRESSION/1. Logistic Regression Intro.vtt 2KB 3. SIMPLE LINEAR REGRESSION/1. Intro to Simple Linear Regression.vtt 2KB 1. INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]/2. Updates on Udemy Reviews.vtt 1KB 6. MULTIPLE LINEAR REGRESSION/1. Multiple Linear Regression Intro.vtt 1KB 9. LASSO AND RIDGE REGRESSION/1. Ridge and Lasso Intro.vtt 1KB 10. Bonus Lectures/1. YOUR SPECIAL BONUS.html 1KB 8. APPLY ARTIFICIAL NEURAL NETWORKS TO PERFROM REGRESSION TASKS/1. Artificial Neural Networks Intro.vtt 962B 5. POLYNOMIAL REGRESSION/1. Polynomial Regression Intro.vtt 922B 4. REGRESSION KEY PERFORMANCE INDICATORS/1. Regression Metrics Intro.vtt 815B Readme.txt 140B 1. INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]/[Tutorialsplanet.NET].url 128B 10. Bonus Lectures/[Tutorialsplanet.NET].url 128B 5. POLYNOMIAL REGRESSION/[Tutorialsplanet.NET].url 128B 7. LOGISTIC REGRESSION/[Tutorialsplanet.NET].url 128B [Tutorialsplanet.NET].url 128B