PacktPub - Data Cleansing Master Class in Python 收录时间:2022-01-19 10:49:02 文件大小:6GB 下载次数:1 最近下载:2022-01-19 10:49:02 磁力链接: magnet:?xt=urn:btih:542c9944d3404a8babbf129a40e4e0982d996f97 立即下载 复制链接 文件列表 Section 5/05.08-nominal_and_ordinal_variables.mkv 302MB Section 2/02.01-introducing_data_preparation.mkv 277MB Section 2/02.04-choosing_a_data_preparation_technique.mkv 264MB Section 2/02.03-data_preparation_defined.mkv 252MB Section 6/06.06-challenge_of_preparing_new_data_for_a_model.mkv 247MB Section 4/04.01-feature_selection_introduction.mkv 203MB Section 4/04.24-feature_importance_scores_defined.mkv 187MB Section 4/04.19-recursive_feature_elimination.mkv 177MB Section 2/02.08-common_data_preparation_tasks-data_cleansing.mkv 160MB Section 3/03.01-data_cleansing_overview.mkv 160MB Section 1/01.02-course_structure.mkv 157MB Section 5/05.19-polynomial_features.mkv 153MB Section 1/01.01-course_introduction.mkv 153MB Section 2/02.14-problem_with_naive_data_preparation.mkv 143MB Section 2/02.11-common_data_preparation_tasks-feature_engineering.mkv 135MB Section 2/02.06-raw_data.mkv 115MB Section 3/03.05-identify_and_remove_rows_that_contain_duplicate_data.mkv 111MB Section 4/04.03-statistics_for_feature_selection.mkv 104MB Section 3/03.06-defining_outliers.mkv 98MB Section 7/07.02-techniques_for_dimensionality_reduction.mkv 97MB Section 2/02.02-the_machine_learning_process.mkv 91MB Section 2/02.05-what_is_data_in_machine_learning.mkv 76MB Section 3/03.10-mark_missing_values.mkv 60MB Section 7/07.05-principal_component_analysis.mkv 60MB Section 4/04.18-tuning_number_of_selected_features.mkv 55MB Section 6/06.05-automatically_transform_target_variable.mkv 54MB Section 2/02.09-common_data_preparation_tasks-feature_selection.mkv 52MB Section 4/04.20-rfe_for_classification.mkv 51MB Section 3/03.09-automatic_outlier_detection.mkv 50MB Section 3/03.07-remove_outliers-the_standard_deviation_approach.mkv 50MB Section 7/07.04-linear_discriminant_analysis_demonstrated.mkv 49MB Section 2/02.15-case_study_data_leakage_train__test__split_naive_approach.mkv 47MB Section 5/05.13-ordinal_encoder_transform_on_breast_cancer_dataset.mkv 46MB Section 3/03.16-k-nearest_neighbors_imputation.mkv 44MB Section 5/05.05-robust_scaling_data.mkv 42MB Section 4/04.29-feature_selection_with_importance.mkv 42MB Section 3/03.13-mean_value_imputation.mkv 42MB Section 4/04.09-feature_selection_with_anova_on_numerical_input.mkv 42MB Section 3/03.08-remove_outliers-the_iqr_approach.mkv 41MB Section 6/06.07-save_model_and_data_scaler.mkv 40MB Section 2/02.17-case_study_data_leakage_k-fold_naive_approach.mkv 40MB Section 4/04.12-tuning_a_number_of_selected_features.mkv 38MB Section 3/03.18-iterative_imputation.mkv 38MB Section 4/04.08-modeling_with_selected_categorical_features.mkv 37MB Section 4/04.26-feature_importance_scores_logistic_regression_and_cart.mkv 37MB Section 4/04.16-baseline_and_model_built_using_correlation.mkv 36MB Section 2/02.18-case_study_data_leakage_k-fold_correct_approach.mkv 35MB Section 6/06.03-the_columntransformer_on_abalone_dataset.mkv 35MB Section 4/04.25-feature_importance_scores_linear_regression.mkv 35MB Section 3/03.17-knnimputer_and_model_evaluation.mkv 34MB Section 4/04.22-rfe_hyperparameters.mkv 33MB Section 5/05.17-box-cox_on_sonar_dataset.mkv 32MB Section 3/03.03-identify_columns_with_few_values.mkv 31MB Section 4/04.23-feature_ranking_for_rfe.mkv 30MB Section 4/04.15-linear_correlation_with_mutual_information.mkv 29MB Section 3/03.04-remove_columns_with_low_variance.mkv 29MB Section 2/02.07-machine_learning_is_mostly_data_preparation.mkv 29MB Section 5/05.16-power_transform_on_sonar_dataset.mkv 29MB Section 5/05.04-standardscaler_transform.mkv 29MB Section 4/04.28-permutation_feature_importance.mkv 28MB Section 6/06.02-the_columntransformer.mkv 28MB Section 3/03.11-remove_rows_with_missing_values.mkv 28MB Section 4/04.04-loading_a_categorical_dataset.mkv 28MB Section 2/02.16-case_study_data_leakage_train__test__split_correct_approach.mkv 27MB Section 4/04.21-rfe_for_regression.mkv 26MB Section 4/04.14-linear_correlation_with_correlation_statistics.mkv 26MB Section 5/05.18-yeo-johnson_on_sonar_dataset.mkv 26MB Section 4/04.11-modeling_with_selected_numerical_features.mkv 26MB Section 3/03.15-compare_different_statistical_imputation_strategies.mkv 25MB Section 4/04.05-encode_the_dataset_for_modelling.mkv 25MB Section 6/06.04-manually_transform_target_variable.mkv 25MB Section 5/05.03-minmaxscaler_transform.mkv 24MB Section 6/06.01-transforming_different_data_types.mkv 23MB Section 5/05.02-diabetes_dataset_for_scaling.mkv 23MB Section 3/03.20-iterativeimputer_and_different_imputation_order.mkv 23MB Section 4/04.13-select_features_for_numerical_output.mkv 23MB Section 5/05.06-robust_scaler_applied_to_dataset.mkv 23MB Section 5/05.15-power_transform_on_contrived_dataset.mkv 21MB Section 3/03.14-simple_imputer_with_model_evaluation.mkv 21MB Section 7/07.03-linear_discriminant_analysis.mkv 19MB Section 5/05.20-effect_of_polynomial_degrees.mkv 19MB Section 3/03.19-iterativeimputer_and_model_evaluation.mkv 18MB Section 4/04.10-feature_selection_with_mutual_information.mkv 18MB Section 4/04.07-mutual_information.mkv 18MB Section 3/03.02-identify_columns_that_contain_a_single_value.mkv 18MB Section 6/06.08-load_and_apply_saved_scalers.mkv 18MB Section 4/04.06-chi-squared.mkv 17MB Section 5/05.12-dummy_variable_encoding.mkv 17MB Section 5/05.11-one-hot_encoding.mkv 17MB Section 5/05.09-ordinal_encoding.mkv 17MB Section 4/04.27-feature_importance_scores_random_forests.mkv 17MB Section 5/05.07-explore_robust_scaler_range.mkv 15MB Section 7/07.01-curse_of_dimensionality.mkv 14MB Section 4/04.02-feature_selection_defined.mkv 12MB Section 4/04.17-model_built_using_mutual_information_features.mkv 11MB Section 2/02.13-data_leakage.mkv 11MB Section 5/05.01-scale_numerical_data.mkv 11MB Section 2/02.10-common_data_preparation_tasks-data_transforms.mkv 10MB Section 2/02.12-common_data_preparation_tasks-dimensionality_reduction.mkv 9MB Section 5/05.14-make_distributions_more_gaussian.mkv 9MB Section 3/03.12-statistical_imputation.mkv 6MB Section 1/01.03-is_this_course_right_for_you.mkv 4MB Section 5/05.10-one-hot_encoding_defined.mkv 4MB .pad/1041423 1017KB .pad/1035088 1011KB .pad/1028594 1004KB .pad/1026228 1002KB .pad/1021767 998KB .pad/1020837 997KB .pad/1020280 996KB .pad/1016141 992KB .pad/1010788 987KB .pad/982018 959KB .pad/937414 915KB .pad/930537 909KB .pad/928873 907KB .pad/917539 896KB .pad/906845 886KB .pad/901620 880KB .pad/897414 876KB .pad/892696 872KB .pad/873536 853KB .pad/873062 853KB .pad/856348 836KB .pad/851725 832KB .pad/848705 829KB .pad/842348 823KB .pad/834432 815KB .pad/831070 812KB .pad/819459 800KB .pad/814529 795KB .pad/811976 793KB .pad/786774 768KB .pad/783322 765KB .pad/782810 764KB .pad/779464 761KB .pad/774239 756KB .pad/767547 750KB .pad/761582 744KB .pad/738326 721KB .pad/736848 720KB .pad/717787 701KB .pad/707365 691KB .pad/706490 690KB .pad/697727 681KB .pad/692284 676KB .pad/683391 667KB .pad/678321 662KB .pad/654842 639KB .pad/649746 635KB .pad/639658 625KB .pad/627675 613KB .pad/622970 608KB .pad/620841 606KB .pad/606506 592KB .pad/605900 592KB .pad/600149 586KB .pad/593468 580KB .pad/566501 553KB .pad/563078 550KB .pad/539781 527KB .pad/538114 526KB .pad/531461 519KB .pad/522851 511KB .pad/492371 481KB .pad/489846 478KB .pad/461403 451KB .pad/450945 440KB .pad/428522 418KB .pad/420830 411KB .pad/407005 397KB .pad/395493 386KB .pad/382577 374KB .pad/369512 361KB .pad/367910 359KB .pad/355303 347KB .pad/355091 347KB .pad/352730 344KB .pad/342030 334KB .pad/338259 330KB .pad/331623 324KB .pad/326111 318KB .pad/313564 306KB Exercises Files.zip 304KB .pad/306943 300KB .pad/277880 271KB .pad/270981 265KB .pad/237919 232KB .pad/233879 228KB .pad/233595 228KB .pad/223708 218KB .pad/153574 150KB .pad/146780 143KB .pad/140111 137KB .pad/126104 123KB .pad/125449 123KB .pad/113444 111KB .pad/98079 96KB .pad/97497 95KB .pad/84317 82KB .pad/67333 66KB .pad/60059 59KB .pad/32073 31KB .pad/24755 24KB .pad/16481 16KB .pad/8885 9KB .pad/2225 2KB