[] deep-reinforcement-learning-in-python
- 收录时间:2018-03-24 02:41:42
- 文件大小:522MB
- 下载次数:280
- 最近下载:2021-01-19 16:47:28
- 磁力链接:
-
文件列表
- 07 Appendix/044 Environment Setup.mp4 44MB
- 07 Appendix/045 How to Code by Yourself part 1.mp4 25MB
- 05 Policy Gradients/035 Mountain Car Continuous Tensorflow.mp4 20MB
- 06 Deep Q-Learning/042 Deep Q-Learning in Theano for Breakout.mp4 20MB
- 05 Policy Gradients/034 Mountain Car Continuous Theano.mp4 19MB
- 05 Policy Gradients/030 Policy Gradient in TensorFlow for CartPole.mp4 18MB
- 05 Policy Gradients/029 Policy Gradient Methods.mp4 18MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/016 RBF Neural Networks.mp4 17MB
- 01 Introduction and Logistics/001 Introduction and Outline.mp4 16MB
- 06 Deep Q-Learning/041 Deep Q-Learning in Tensorflow for Breakout.mp4 16MB
- 06 Deep Q-Learning/038 Deep Q-Learning in Tensorflow for CartPole.mp4 15MB
- 07 Appendix/046 How to Code by Yourself part 2.mp4 15MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/015 CartPole with Bins Code.mp4 15MB
- 06 Deep Q-Learning/037 Deep Q-Learning Techniques.mp4 14MB
- 01 Introduction and Logistics/003 How to Succeed in this Course.mp4 14MB
- 06 Deep Q-Learning/039 Deep Q-Learning in Theano for CartPole.mp4 14MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/017 RBF Networks with Mountain Car Code.mp4 14MB
- 05 Policy Gradients/031 Policy Gradient in Theano for CartPole.mp4 13MB
- 02 Background Review/005 Review of Markov Decision Processes.mp4 12MB
- 04 TD Lambda/026 TD Lambda.mp4 12MB
- 02 Background Review/010 Review of Deep Learning.mp4 11MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/012 Random Search.mp4 10MB
- 04 TD Lambda/025 N-Step in Code.mp4 9MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/019 RBF Networks with CartPole Code.mp4 9MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/011 OpenAI Gym Tutorial.mp4 9MB
- 06 Deep Q-Learning/040 Additional Implementation Details for Atari.mp4 9MB
- 04 TD Lambda/027 TD Lambda in Code.mp4 8MB
- 06 Deep Q-Learning/043 Partially Observable MDPs.mp4 8MB
- 02 Background Review/008 Review of Temporal Difference Learning.mp4 7MB
- 05 Policy Gradients/032 Continuous Action Spaces.mp4 7MB
- 02 Background Review/006 Review of Dynamic Programming.mp4 7MB
- 05 Policy Gradients/033 Mountain Car Continuous Specifics.mp4 7MB
- 02 Background Review/007 Review of Monte Carlo Methods.mp4 6MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/014 CartPole with Bins Theory.mp4 6MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/022 Plugging in a Neural Network.mp4 6MB
- 06 Deep Q-Learning/036 Deep Q-Learning Intro.mp4 6MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/020 Theano Warmup.mp4 6MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/023 OpenAI Gym Section Summary.mp4 5MB
- 01 Introduction and Logistics/002 Where to get the Code.mp4 5MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/021 Tensorflow Warmup.mp4 5MB
- 04 TD Lambda/024 N-Step Methods.mp4 5MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/013 Saving a Video.mp4 5MB
- 02 Background Review/004 Review Intro.mp4 4MB
- 07 Appendix/047 Where to get Udemy coupons and FREE deep learning material.mp4 4MB
- 02 Background Review/009 Review of Approximation Methods for Reinforcement Learning.mp4 4MB
- 04 TD Lambda/028 TD Lambda Summary.mp4 4MB
- 03 OpenAI Gym and Basic Reinforcement Learning Techniques/018 RBF Networks with CartPole Theory.mp4 3MB
- Freetutorials.Us.url 119B
- [FreeTutorials.Us].txt 75B