[] [UDEMY] A-Z Machine Learning using Azure Machine Learning (AzureML) [FTU]
- 收录时间:2019-05-12 20:13:51
- 文件大小:2GB
- 下载次数:51
- 最近下载:2021-01-18 21:50:25
- 磁力链接:
-
文件列表
- 07. Regression Analysis/3. [Hands On] - Linear Regression model using OLS.mp4 91MB
- 12. Text Analytics and Natural Language Processing/5. [Hands On] - Classify Customer Complaints using Text Analytics.mp4 91MB
- 12. Text Analytics and Natural Language Processing/4. Feature Hashing.mp4 75MB
- 01. Basics of Machine Learning/4. Why Machine Learning is the Future.mp4 69MB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/9. [Hands On] - Fisher Based LDA - Experiment.mp4 61MB
- 01. Basics of Machine Learning/5. What is Machine Learning.mp4 55MB
- 12. Text Analytics and Natural Language Processing/2. Text Pre-Processing.mp4 55MB
- 04. Classification/2. [Hands On] -Logistic Regression - Build Two-Class Loan Approval Prediction Model.mp4 52MB
- 12. Text Analytics and Natural Language Processing/3. Bag Of Words and N-Gram Models for Text features.mp4 50MB
- 13. Thank You and Bonus Lecture/1. Way Forward.mp4 49MB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/2. Pearson Correlation Coefficient.mp4 47MB
- 12. Text Analytics and Natural Language Processing/1. What is Text Analytics or Natural Language Processing.mp4 41MB
- 03. Data Processing/5. [Hands On] - Apply SQL Transformation, Clean Missing Data, Edit Metadata.mp4 39MB
- 11. Recommendation System/5. [Hands On] - Restaurant Recommendation Experiment.mp4 36MB
- 03. Data Processing/6. [Hands On] - Sample and Split Data - Partition or Sample, Train and Test Data.mp4 36MB
- 04. Classification/12. [Hands On] - Two Class Decision Forest - Adult Census Income Prediction.mp4 35MB
- 11. Recommendation System/1. What is a Recommendation System.mp4 35MB
- 08. Clustering/2. [Hands On] - Cluster Analysis Experiment 1.mp4 31MB
- 04. Classification/4. Understanding the Confusion Matrix, AUC, Accuracy, Precision, Recall and F1Score.mp4 29MB
- 07. Regression Analysis/5. Gradient Descent.mp4 28MB
- 03. Data Processing/4. [Hands On] -Data Transform - Add RowsColumns, Remove Duplicates, Select Columns.mp4 26MB
- 04. Classification/10. [Hands On] Two-Class Boosted Decision Tree - Build Bank Telemarketing Prediction.mp4 25MB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/8. Fisher Based LDA - Intuition.mp4 24MB
- 02. Getting Started with Azure ML/2. What is Azure ML and high level architecture..mp4 23MB
- 08. Clustering/1. What is Cluster Analysis.mp4 22MB
- 03. Data Processing/2. [Hands On] - Data Input-Output - Convert and Unpack.mp4 22MB
- 05. Hyperparameter Tuning/1. [Hands On] - Tune Hyperparameter for Best Parameter Selection.mp4 22MB
- 04. Classification/6. [Hands On] Logistic Regression - Build Multi-Class Wine Quality Prediction Model.mp4 20MB
- 04. Classification/3. Logistic Regression - Understand Parameters and Their Impact.mp4 20MB
- 01. Basics of Machine Learning/8. Types of Machine Learning Models - Classification, Regression, Clustering etc.mp4 19MB
- 01. Basics of Machine Learning/1. What You Will Learn in This Section.mp4 19MB
- 01. Basics of Machine Learning/3. Important Message About Udemy Reviews.mp4 19MB
- 03. Data Processing/1. [Hands On] - Data Input-Output - Upload Data.mp4 19MB
- 04. Classification/13. [Hands On] - Decision Tree - Multi Class Decision Forest IRIS Data.mp4 19MB
- 08. Clustering/3. [Hands On] - Cluster Analysis Experiment 2 - Score and Evaluate.mp4 18MB
- 09. Data Processing - Solving Data Processing Challenges/5. [Hands On] - Outliers Treatment - Clip Values.mp4 18MB
- 11. Recommendation System/6. Understanding the Matchbox Recommendation Results.mp4 17MB
- 07. Regression Analysis/10. [Hands On] - Decision Tree - Experiment Boosted Decision Tree.mp4 17MB
- 06. Deploy Webservice/3. [Hands On] - Use the Web Service - Example of Excel.mp4 17MB
- 09. Data Processing - Solving Data Processing Challenges/7. [Hands On] - Clean Missing Data with MICE.mp4 16MB
- 09. Data Processing - Solving Data Processing Challenges/9. [Hands On] - SMOTE.mp4 16MB
- 11. Recommendation System/2. Data Preparation using Recommender Split.mp4 15MB
- 11. Recommendation System/3. What is Matchbox Recommender and Train Matchbox Recommender.mp4 15MB
- 04. Classification/7. Decision Tree - What is Decision Tree.mp4 14MB
- 09. Data Processing - Solving Data Processing Challenges/8. SMOTE - Create New Synthetic Observations.mp4 14MB
- 07. Regression Analysis/1. What is Linear Regression.mp4 14MB
- 04. Classification/15. [Hands On] - SVM - Adult Census Income Prediction.mp4 14MB
- 04. Classification/5. Logistic Regression - Model Selection and Impact Analysis.mp4 14MB
- 01. Basics of Machine Learning/6. Understanding various aspects of data - Type, Variables, Category.mp4 14MB
- 02. Getting Started with Azure ML/1. What You Will Learn in This Section.mp4 13MB
- 01. Basics of Machine Learning/7. Common Machine Learning Terms - Probability, Mean, Mode, Median, Range.mp4 13MB
- 02. Getting Started with Azure ML/5. Azure ML Experiment Workflow.mp4 13MB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/6. [Hands On] - Comparison Experiment for Correlation Coefficients.mp4 13MB
- 03. Data Processing/3. [Hands On] - Data Input-Output - Import Data.mp4 13MB
- 09. Data Processing - Solving Data Processing Challenges/6. Clean Missing Data with MICE.mp4 13MB
- 04. Classification/8. Decision Tree - Ensemble Learning - Bagging and Boosting.mp4 13MB
- 07. Regression Analysis/2. Regression Analysis - Common Metrics.mp4 13MB
- 07. Regression Analysis/8. Decision Tree - What is Regression Tree.mp4 12MB
- 02. Getting Started with Azure ML/4. Azure ML Studio Overview and walk-through.mp4 12MB
- 04. Classification/9. Decision Tree - Parameters - Two Class Boosted Decision Tree.mp4 12MB
- 09. Data Processing - Solving Data Processing Challenges/2. How to Summarize Data.mp4 12MB
- 09. Data Processing - Solving Data Processing Challenges/4. Outliers Treatment - Clip Values.mp4 11MB
- 04. Classification/1. Logistic Regression - What is Logistic Regression.mp4 11MB
- 02. Getting Started with Azure ML/6. Azure ML Cheat Sheet for Model Selection.mp4 11MB
- 11. Recommendation System/4. How to Score the Matchbox Recommender.mp4 11MB
- 07. Regression Analysis/7. [Hands On] - Experiment Online Gradient.mp4 11MB
- 09. Data Processing - Solving Data Processing Challenges/12. PCA - What is PCA and Curse of Dimensionality.mp4 11MB
- 09. Data Processing - Solving Data Processing Challenges/14. Join Data - Join Multiple Datasets based on common keys.mp4 10MB
- 07. Regression Analysis/4. [Hands On] - Linear Regression - R Squared.mp4 10MB
- 06. Deploy Webservice/2. [Hands On] - Deploy Machine Learning Model As a Web Service.vtt 9MB
- 06. Deploy Webservice/2. [Hands On] - Deploy Machine Learning Model As a Web Service.mp4 9MB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/3. Chi Square Test of Independence.mp4 8MB
- 09. Data Processing - Solving Data Processing Challenges/3. [Hands On] - Summarize Data - Experiment.mp4 8MB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/1. Feature Selection - Section Introduction.mp4 8MB
- 09. Data Processing - Solving Data Processing Challenges/13. [Hands On] - Principal Component Analysis.mp4 7MB
- 04. Classification/14. SVM - What is Support Vector Machine.mp4 7MB
- 07. Regression Analysis/6. Linear Regression Online Gradient Descent.mp4 7MB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/4. Kendall Correlation Coefficient.mp4 7MB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/7. [Hands On] - Filter Based Selection - AzureML Experiment.mp4 6MB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/5. Spearman's Rank Correlation.mp4 6MB
- 09. Data Processing - Solving Data Processing Challenges/11. [Hands On] - Data Normalization.mp4 6MB
- 04. Classification/11. Decision Forest - Parameters Explained.mp4 6MB
- 09. Data Processing - Solving Data Processing Challenges/15. [Hands On] - Join Data - Experiment.mp4 6MB
- 06. Deploy Webservice/1. Azure ML Webservice - Prepare the experiment for webservice.mp4 6MB
- 02. Getting Started with Azure ML/3. Creating a Free Azure ML Account.mp4 5MB
- 09. Data Processing - Solving Data Processing Challenges/1. Section Introduction.mp4 5MB
- 09. Data Processing - Solving Data Processing Challenges/10. Data Normalization - Scale and Reduce.mp4 5MB
- 04. Classification/10.1 Bank Telemarketing.csv.csv 5MB
- 07. Regression Analysis/9. Decision Tree - What is Boosted Decision Tree Regression.mp4 4MB
- 01. Basics of Machine Learning/2.11 Section 04 - Classification - 002 - Decision Tree.pdf.pdf 3MB
- 01. Basics of Machine Learning/2.12 Section 11 - Recommendation System.pdf.pdf 3MB
- 01. Basics of Machine Learning/2.9 Section 10 - Feature Selection.pdf.pdf 3MB
- 01. Basics of Machine Learning/2.10 Section 09 - Data Processing.pdf.pdf 3MB
- 01. Basics of Machine Learning/2.8 Section 07 - Regression.pdf.pdf 3MB
- 01. Basics of Machine Learning/2.4 Section 02 - Getting Started with AzureML.pdf.pdf 3MB
- 02. Getting Started with Azure ML/6.2 ml_studio_overview_v1.1.pdf.pdf 2MB
- 01. Basics of Machine Learning/2.13 Section - Text Analytics.pdf.pdf 2MB
- 01. Basics of Machine Learning/2.1 Section 01 - Basics of Machine Learning.pdf.pdf 2MB
- 01. Basics of Machine Learning/2.6 Section 08 - Clustering.pdf.pdf 2MB
- 01. Basics of Machine Learning/2.3 Section 04 - Classification - 001 - Logistic Regression.pdf.pdf 1MB
- 01. Basics of Machine Learning/2.7 Section 05 - Tune Hyperparameter.pdf.pdf 1MB
- 01. Basics of Machine Learning/2.5 Section 04 - Classification - 003 - SVM.pdf.pdf 1MB
- 01. Basics of Machine Learning/2.14 Section 03 - Data Pre-processing.pdf.pdf 1MB
- 01. Basics of Machine Learning/2.2 Section 06 - Deploy Webservice.pdf.pdf 702KB
- 02. Getting Started with Azure ML/6.1 microsoft-machine-learning-algorithm-cheat-sheet-v6.pdf.pdf 404KB
- 13. Thank You and Bonus Lecture/1.1 Links for datasets.pdf.pdf 261KB
- FreeCoursesOnline.Me.html 108KB
- FTUForum.com.html 100KB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/9.1 Wine-Low-Medium-High.csv.csv 95KB
- 03. Data Processing/5.1 Wine Quality Dataset.csv.csv 84KB
- 04. Classification/6.1 winequality-red.csv.csv 84KB
- 12. Text Analytics and Natural Language Processing/5.1 two-class complaints modified.txt.txt 47KB
- 04. Classification/2.1 Loan Approval Prediction.csv.csv 37KB
- 09. Data Processing - Solving Data Processing Challenges/7.1 MICE Loan Dataset.csv.csv 37KB
- Discuss.FTUForum.com.html 32KB
- 04. Classification/4.1 004 - Logistic Regression - Understanding the results.xlsx.xlsx 24KB
- 04. Classification/2. [Hands On] -Logistic Regression - Build Two-Class Loan Approval Prediction Model.vtt 20KB
- 03. Data Processing/5. [Hands On] - Apply SQL Transformation, Clean Missing Data, Edit Metadata.vtt 16KB
- 11. Recommendation System/1. What is a Recommendation System.vtt 15KB
- 03. Data Processing/6. [Hands On] - Sample and Split Data - Partition or Sample, Train and Test Data.vtt 15KB
- 12. Text Analytics and Natural Language Processing/2. Text Pre-Processing.vtt 13KB
- 12. Text Analytics and Natural Language Processing/4. Feature Hashing.vtt 13KB
- 04. Classification/12. [Hands On] - Two Class Decision Forest - Adult Census Income Prediction.vtt 13KB
- 08. Clustering/2. [Hands On] - Cluster Analysis Experiment 1.vtt 12KB
- 04. Classification/4. Understanding the Confusion Matrix, AUC, Accuracy, Precision, Recall and F1Score.vtt 12KB
- 11. Recommendation System/5. [Hands On] - Restaurant Recommendation Experiment.vtt 11KB
- 04. Classification/3. Logistic Regression - Understand Parameters and Their Impact.vtt 11KB
- 03. Data Processing/4. [Hands On] -Data Transform - Add RowsColumns, Remove Duplicates, Select Columns.vtt 10KB
- 08. Clustering/1. What is Cluster Analysis.vtt 10KB
- 01. Basics of Machine Learning/5. What is Machine Learning.vtt 10KB
- 07. Regression Analysis/3. [Hands On] - Linear Regression model using OLS.vtt 10KB
- 12. Text Analytics and Natural Language Processing/5. [Hands On] - Classify Customer Complaints using Text Analytics.vtt 10KB
- 01. Basics of Machine Learning/4. Why Machine Learning is the Future.vtt 9KB
- 01. Basics of Machine Learning/8. Types of Machine Learning Models - Classification, Regression, Clustering etc.vtt 9KB
- 07. Regression Analysis/5. Gradient Descent.vtt 9KB
- 04. Classification/10. [Hands On] Two-Class Boosted Decision Tree - Build Bank Telemarketing Prediction.vtt 9KB
- 05. Hyperparameter Tuning/1. [Hands On] - Tune Hyperparameter for Best Parameter Selection.vtt 9KB
- 03. Data Processing/2. [Hands On] - Data Input-Output - Convert and Unpack.vtt 8KB
- 12. Text Analytics and Natural Language Processing/3. Bag Of Words and N-Gram Models for Text features.vtt 8KB
- 04. Classification/6. [Hands On] Logistic Regression - Build Multi-Class Wine Quality Prediction Model.vtt 8KB
- 01. Basics of Machine Learning/7. Common Machine Learning Terms - Probability, Mean, Mode, Median, Range.vtt 7KB
- 12. Text Analytics and Natural Language Processing/1. What is Text Analytics or Natural Language Processing.vtt 7KB
- 11. Recommendation System/2. Data Preparation using Recommender Split.vtt 7KB
- 09. Data Processing - Solving Data Processing Challenges/8. SMOTE - Create New Synthetic Observations.vtt 7KB
- 11. Recommendation System/3. What is Matchbox Recommender and Train Matchbox Recommender.vtt 7KB
- 11. Recommendation System/6. Understanding the Matchbox Recommendation Results.vtt 7KB
- 03. Data Processing/1. [Hands On] - Data Input-Output - Upload Data.vtt 7KB
- 01. Basics of Machine Learning/6. Understanding various aspects of data - Type, Variables, Category.vtt 7KB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/6. [Hands On] - Comparison Experiment for Correlation Coefficients.vtt 7KB
- 04. Classification/13. [Hands On] - Decision Tree - Multi Class Decision Forest IRIS Data.vtt 7KB
- 04. Classification/7. Decision Tree - What is Decision Tree.vtt 7KB
- 02. Getting Started with Azure ML/5. Azure ML Experiment Workflow.vtt 7KB
- 08. Clustering/3. [Hands On] - Cluster Analysis Experiment 2 - Score and Evaluate.vtt 7KB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/2. Pearson Correlation Coefficient.vtt 7KB
- 04. Classification/8. Decision Tree - Ensemble Learning - Bagging and Boosting.vtt 7KB
- 09. Data Processing - Solving Data Processing Challenges/5. [Hands On] - Outliers Treatment - Clip Values.vtt 6KB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/1. Feature Selection - Section Introduction.vtt 6KB
- 09. Data Processing - Solving Data Processing Challenges/9.1 LoanSMOTE.csv.csv 6KB
- 09. Data Processing - Solving Data Processing Challenges/7. [Hands On] - Clean Missing Data with MICE.vtt 6KB
- 09. Data Processing - Solving Data Processing Challenges/6. Clean Missing Data with MICE.vtt 6KB
- 06. Deploy Webservice/3. [Hands On] - Use the Web Service - Example of Excel.vtt 6KB
- 09. Data Processing - Solving Data Processing Challenges/4. Outliers Treatment - Clip Values.vtt 6KB
- 02. Getting Started with Azure ML/6. Azure ML Cheat Sheet for Model Selection.vtt 6KB
- 04. Classification/1. Logistic Regression - What is Logistic Regression.vtt 6KB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/9. [Hands On] - Fisher Based LDA - Experiment.vtt 6KB
- 03. Data Processing/3. [Hands On] - Data Input-Output - Import Data.vtt 6KB
- 07. Regression Analysis/10. [Hands On] - Decision Tree - Experiment Boosted Decision Tree.vtt 6KB
- 09. Data Processing - Solving Data Processing Challenges/2. How to Summarize Data.vtt 6KB
- 07. Regression Analysis/2. Regression Analysis - Common Metrics.vtt 6KB
- 09. Data Processing - Solving Data Processing Challenges/12. PCA - What is PCA and Curse of Dimensionality.vtt 6KB
- 07. Regression Analysis/8. Decision Tree - What is Regression Tree.vtt 5KB
- 09. Data Processing - Solving Data Processing Challenges/14. Join Data - Join Multiple Datasets based on common keys.vtt 5KB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/3. Chi Square Test of Independence.vtt 5KB
- 04. Classification/9. Decision Tree - Parameters - Two Class Boosted Decision Tree.vtt 5KB
- 07. Regression Analysis/1. What is Linear Regression.vtt 5KB
- 11. Recommendation System/4. How to Score the Matchbox Recommender.vtt 5KB
- 04. Classification/5. Logistic Regression - Model Selection and Impact Analysis.vtt 5KB
- 09. Data Processing - Solving Data Processing Challenges/9. [Hands On] - SMOTE.vtt 5KB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/8. Fisher Based LDA - Intuition.vtt 5KB
- 04. Classification/15. [Hands On] - SVM - Adult Census Income Prediction.vtt 5KB
- 13. Thank You and Bonus Lecture/1. Way Forward.vtt 5KB
- 02. Getting Started with Azure ML/4. Azure ML Studio Overview and walk-through.vtt 5KB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/4. Kendall Correlation Coefficient.vtt 4KB
- 07. Regression Analysis/7. [Hands On] - Experiment Online Gradient.vtt 4KB
- 07. Regression Analysis/4. [Hands On] - Linear Regression - R Squared.vtt 4KB
- 01. Basics of Machine Learning/3. Important Message About Udemy Reviews.vtt 4KB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/5. Spearman's Rank Correlation.vtt 4KB
- 04. Classification/14. SVM - What is Support Vector Machine.vtt 4KB
- 10. Feature Selection - Select a subset of Variables or features with highest impact/7. [Hands On] - Filter Based Selection - AzureML Experiment.vtt 4KB
- 02. Getting Started with Azure ML/2. What is Azure ML and high level architecture..vtt 3KB
- 04. Classification/11. Decision Forest - Parameters Explained.vtt 3KB
- 09. Data Processing - Solving Data Processing Challenges/13. [Hands On] - Principal Component Analysis.vtt 3KB
- 09. Data Processing - Solving Data Processing Challenges/3. [Hands On] - Summarize Data - Experiment.vtt 3KB
- 09. Data Processing - Solving Data Processing Challenges/1. Section Introduction.vtt 3KB
- 09. Data Processing - Solving Data Processing Challenges/10. Data Normalization - Scale and Reduce.vtt 3KB
- 09. Data Processing - Solving Data Processing Challenges/15. [Hands On] - Join Data - Experiment.vtt 2KB
- 01. Basics of Machine Learning/1. What You Will Learn in This Section.vtt 2KB
- 06. Deploy Webservice/1. Azure ML Webservice - Prepare the experiment for webservice.vtt 2KB
- 02. Getting Started with Azure ML/3. Creating a Free Azure ML Account.vtt 2KB
- 09. Data Processing - Solving Data Processing Challenges/11. [Hands On] - Data Normalization.vtt 2KB
- 02. Getting Started with Azure ML/1. What You Will Learn in This Section.vtt 2KB
- 07. Regression Analysis/6. Linear Regression Online Gradient Descent.vtt 2KB
- 03. Data Processing/1.1 Employee Dataset - Full.csv.csv 2KB
- 03. Data Processing/4.5 Employee Dataset - TSV.txt.txt 2KB
- 07. Regression Analysis/9. Decision Tree - What is Boosted Decision Tree Regression.vtt 2KB
- 03. Data Processing/4.1 Employee Dataset - AC1.csv.csv 2KB
- 13. Thank You and Bonus Lecture/2. Bonus Lecture.html 1KB
- 03. Data Processing/4.2 Employee Dataset - AR2.csv.csv 1KB
- 08. Clustering/2.1 Callcenter Data.csv.csv 831B
- 03. Data Processing/2.1 Employee Dataset - Full.zip.zip 773B
- 03. Data Processing/4.4 Employee Dataset - AR1.csv.csv 672B
- [TGx]Downloaded from torrentgalaxy.org.txt 524B
- 01. Basics of Machine Learning/2. The course slides for all sections.html 336B
- 03. Data Processing/4.3 Employee Dataset - AC2.csv.csv 260B
- How you can help Team-FTU.txt 235B
- 03. Data Processing/5.2 SQL Statement - Wine.txt.txt 141B
- 06. Deploy Webservice/4. AzureML Web Service.html 137B
- 07. Regression Analysis/11. Regression Analysis.html 137B
- 08. Clustering/4. Clustering or Cluster Analysis.html 137B
- 11. Recommendation System/7. Recommendation System.html 137B
- 01. Basics of Machine Learning/9. Basics of Machine Learning.html 136B
- 02. Getting Started with Azure ML/7. Getting Started with AzureML.html 136B
- 03. Data Processing/7. Data Processing.html 136B
- 04. Classification/16. Classification Quiz.html 136B
- 05. Hyperparameter Tuning/2. Hyperparameter Tuning.html 136B
- 09. Data Processing - Solving Data Processing Challenges/15.1 EmpSalaryJC.csv.csv 110B
- 09. Data Processing - Solving Data Processing Challenges/15.2 EmpDeptJC.csv.csv 108B
- Torrent Downloaded From GloDls.to.txt 84B
- 03. Data Processing/3.1 Adult Dataset URL.txt.txt 74B
- 04. Classification/13.1 IRIS Dataset Link.txt.txt 74B