589689.xyz

Machine_Learning_A-Z_Hands-On_Python_and_R_In_Data_Science

  • 收录时间:2018-03-13 07:50:40
  • 文件大小:6GB
  • 下载次数:40
  • 最近下载:2019-03-21 02:20:57
  • 磁力链接:

文件列表

  1. 02 -------------------------- Part 1 Data Preprocessing --------------------------/attached_files/006 Welcome to Part 1 - Data Preprocessing/Machine-Learning-A-Z-Template-Folder.zip 227MB
  2. 39 XGBoost/attached_files/213 Download all the Codes and Datasets Here/Machine-Learning-A-Z.zip 227MB
  3. 32 Convolutional Neural Networks/attached_files/190 CNN in Python - Step 1/Convolutional-Neural-Networks.zip 222MB
  4. 12 Logistic Regression/080 Logistic Regression in R - Step 5.mp4 94MB
  5. 31 Artificial Neural Networks/177 ANN in Python - Step 2.mp4 85MB
  6. 17 Decision Tree Classification/102 Decision Tree Classification in R.mp4 68MB
  7. 14 Support Vector Machine SVM/087 SVM in R.mp4 65MB
  8. 18 Random Forest Classification/105 Random Forest Classification in R.mp4 64MB
  9. 32 Convolutional Neural Networks/198 CNN in Python - Step 9.mp4 62MB
  10. 18 Random Forest Classification/104 Random Forest Classification in Python.mp4 62MB
  11. 07 Support Vector Regression SVR/056 SVR in Python.mp4 60MB
  12. 05 Multiple Linear Regression/038 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK.mp4 59MB
  13. 27 Upper Confidence Bound UCB/145 Upper Confidence Bound in R - Step 3.mp4 58MB
  14. 24 Apriori/133 Apriori in R - Step 3.mp4 57MB
  15. 08 Decision Tree Regression/060 Decision Tree Regression in R.mp4 56MB
  16. 13 K-Nearest Neighbors K-NN/084 K-NN in R.mp4 56MB
  17. 28 Thompson Sampling/147 Thompson Sampling in Python - Step 1.mp4 56MB
  18. 15 Kernel SVM/092 Kernel SVM in Python.mp4 55MB
  19. 06 Polynomial Regression/053 Polynomial Regression in R - Step 3.mp4 55MB
  20. 05 Multiple Linear Regression/037 Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4 55MB
  21. 06 Polynomial Regression/048 Polynomial Regression in Python - Step 3.mp4 55MB
  22. 05 Multiple Linear Regression/039 Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4 54MB
  23. 29 --------------------- Part 7 Natural Language Processing ---------------------/172 Natural Language Processing in R - Step 10.mp4 54MB
  24. 27 Upper Confidence Bound UCB/141 Upper Confidence Bound in Python - Step 3.mp4 54MB
  25. 12 Logistic Regression/074 Logistic Regression in Python - Step 5.mp4 53MB
  26. 02 -------------------------- Part 1 Data Preprocessing --------------------------/012 Categorical Data.mp4 53MB
  27. 24 Apriori/131 Apriori in R - Step 1.mp4 53MB
  28. 15 Kernel SVM/093 Kernel SVM in R.mp4 53MB
  29. 09 Random Forest Regression/062 Random Forest Regression in Python.mp4 53MB
  30. 05 Multiple Linear Regression/034 Multiple Linear Regression in Python - Step 1.mp4 52MB
  31. 29 --------------------- Part 7 Natural Language Processing ---------------------/159 Natural Language Processing in Python - Step 8.mp4 52MB
  32. 09 Random Forest Regression/063 Random Forest Regression in R.mp4 52MB
  33. 29 --------------------- Part 7 Natural Language Processing ---------------------/163 Natural Language Processing in R - Step 1.mp4 51MB
  34. 28 Thompson Sampling/149 Thompson Sampling in R - Step 1.mp4 51MB
  35. 02 -------------------------- Part 1 Data Preprocessing --------------------------/013 Splitting the Dataset into the Training set and Test set.mp4 51MB
  36. 05 Multiple Linear Regression/043 Multiple Linear Regression in R - Backward Elimination - HOMEWORK.mp4 51MB
  37. 16 Naive Bayes/094 Bayes Theorem.mp4 50MB
  38. 31 Artificial Neural Networks/186 ANN in R - Step 1.mp4 50MB
  39. 21 K-Means Clustering/115 K-Means Clustering in Python.mp4 50MB
  40. 16 Naive Bayes/099 Naive Bayes in R.mp4 50MB
  41. 04 Simple Linear Regression/027 Simple Linear Regression in R - Step 4.mp4 49MB
  42. 24 Apriori/134 Apriori in Python - Step 1.mp4 47MB
  43. 13 K-Nearest Neighbors K-NN/083 K-NN in Python.mp4 47MB
  44. 29 --------------------- Part 7 Natural Language Processing ---------------------/152 Natural Language Processing in Python - Step 1.mp4 46MB
  45. 35 Linear Discriminant Analysis LDA/205 LDA in Python.mp4 45MB
  46. 05 Multiple Linear Regression/041 Multiple Linear Regression in R - Step 2.mp4 45MB
  47. 02 -------------------------- Part 1 Data Preprocessing --------------------------/014 Feature Scaling.mp4 45MB
  48. 27 Upper Confidence Bound UCB/140 Upper Confidence Bound in Python - Step 2.mp4 44MB
  49. 31 Artificial Neural Networks/189 ANN in R - Step 4 Last step.mp4 44MB
  50. 08 Decision Tree Regression/059 Decision Tree Regression in Python.mp4 43MB
  51. 14 Support Vector Machine SVM/086 SVM in Python.mp4 42MB
  52. 04 Simple Linear Regression/023 Simple Linear Regression in Python - Step 4.mp4 39MB
  53. 31 Artificial Neural Networks/180 ANN in Python - Step 5.mp4 39MB
  54. 02 -------------------------- Part 1 Data Preprocessing --------------------------/011 Missing Data.mp4 39MB
  55. 27 Upper Confidence Bound UCB/139 Upper Confidence Bound in Python - Step 1.mp4 39MB
  56. 17 Decision Tree Classification/101 Decision Tree Classification in Python.mp4 39MB
  57. 24 Apriori/132 Apriori in R - Step 2.mp4 39MB
  58. 38 Model Selection/209 Grid Search in Python - Step 1.mp4 38MB
  59. 31 Artificial Neural Networks/188 ANN in R - Step 3.mp4 38MB
  60. 29 --------------------- Part 7 Natural Language Processing ---------------------/171 Natural Language Processing in R - Step 9.mp4 38MB
  61. 31 Artificial Neural Networks/176 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras.mp4 37MB
  62. 24 Apriori/135 Apriori in Python - Step 2.mp4 37MB
  63. 21 K-Means Clustering/116 K-Means Clustering in R.mp4 37MB
  64. 06 Polynomial Regression/050 Python Regression Template.mp4 37MB
  65. 24 Apriori/136 Apriori in Python - Step 3.mp4 35MB
  66. 06 Polynomial Regression/047 Polynomial Regression in Python - Step 2.mp4 35MB
  67. 15 Kernel SVM/090 The Kernel Trick.mp4 35MB
  68. 32 Convolutional Neural Networks/193 CNN in Python - Step 4.mp4 35MB
  69. 27 Upper Confidence Bound UCB/144 Upper Confidence Bound in R - Step 2.mp4 34MB
  70. 31 Artificial Neural Networks/183 ANN in Python - Step 8.mp4 34MB
  71. 27 Upper Confidence Bound UCB/143 Upper Confidence Bound in R - Step 1.mp4 34MB
  72. 07 Support Vector Regression SVR/057 SVR in R.mp4 34MB
  73. 36 Kernel PCA/206 Kernel PCA in Python.mp4 33MB
  74. 29 --------------------- Part 7 Natural Language Processing ---------------------/161 Natural Language Processing in Python - Step 10.mp4 33MB
  75. 38 Model Selection/208 k-Fold Cross Validation in Python.mp4 33MB
  76. 05 Multiple Linear Regression/033 Multiple Linear Regression Intuition - Step 5.mp4 33MB
  77. 06 Polynomial Regression/052 Polynomial Regression in R - Step 2.mp4 32MB
  78. 39 XGBoost/212 XGBoost in Python - Step 2.mp4 32MB
  79. 34 Principal Component Analysis PCA/202 PCA in Python - Step 1.mp4 32MB
  80. 06 Polynomial Regression/046 Polynomial Regression in Python - Step 1.mp4 32MB
  81. 06 Polynomial Regression/055 R Regression Template.mp4 31MB
  82. 16 Naive Bayes/098 Naive Bayes in Python.mp4 31MB
  83. 16 Naive Bayes/095 Naive Bayes Intuition.mp4 31MB
  84. 32 Convolutional Neural Networks/190 CNN in Python - Step 1.mp4 31MB
  85. 21 K-Means Clustering/112 K-Means Clustering Intuition.mp4 30MB
  86. 29 --------------------- Part 7 Natural Language Processing ---------------------/155 Natural Language Processing in Python - Step 4.mp4 30MB
  87. 38 Model Selection/210 Grid Search in Python - Step 2.mp4 30MB
  88. 31 Artificial Neural Networks/175 Business Problem Description.mp4 29MB
  89. 12 Logistic Regression/069 Logistic Regression Intuition.mp4 29MB
  90. 02 -------------------------- Part 1 Data Preprocessing --------------------------/009 Importing the Dataset.mp4 29MB
  91. 06 Polynomial Regression/054 Polynomial Regression in R - Step 4.mp4 29MB
  92. 31 Artificial Neural Networks/184 ANN in Python - Step 9.mp4 28MB
  93. 31 Artificial Neural Networks/185 ANN in Python - Step 10.mp4 28MB
  94. 10 Evaluating Regression Models Performance/066 Evaluating Regression Models Performance - Homeworks Final Part.mp4 28MB
  95. 04 Simple Linear Regression/020 Simple Linear Regression in Python - Step 1.mp4 28MB
  96. 32 Convolutional Neural Networks/199 CNN in Python - Step 10.mp4 28MB
  97. 12 Logistic Regression/078 Logistic Regression in R - Step 3.mp4 27MB
  98. 29 --------------------- Part 7 Natural Language Processing ---------------------/153 Natural Language Processing in Python - Step 2.mp4 27MB
  99. 10 Evaluating Regression Models Performance/067 Interpreting Linear Regression Coefficients.mp4 27MB
  100. 02 -------------------------- Part 1 Data Preprocessing --------------------------/015 And here is our Data Preprocessing Template.mp4 26MB
  101. 21 K-Means Clustering/114 K-Means Selecting The Number Of Clusters.mp4 26MB
  102. 18 Random Forest Classification/103 Random Forest Classification Intuition.mp4 26MB
  103. 34 Principal Component Analysis PCA/204 PCA in Python - Step 3.mp4 26MB
  104. 05 Multiple Linear Regression/036 Multiple Linear Regression in Python - Step 3.mp4 25MB
  105. 08 Decision Tree Regression/058 Decision Tree Regression Intuition.mp4 25MB
  106. 25 Eclat/137 Eclat in R.mp4 25MB
  107. 04 Simple Linear Regression/025 Simple Linear Regression in R - Step 2.mp4 25MB
  108. 04 Simple Linear Regression/021 Simple Linear Regression in Python - Step 2.mp4 25MB
  109. 01 Welcome to the course/004 Installing Python and Anaconda MAC Windows.mp4 24MB
  110. 05 Multiple Linear Regression/040 Multiple Linear Regression in R - Step 1.mp4 23MB
  111. 01 Welcome to the course/003 Installing R and R Studio MAC Windows.mp4 23MB
  112. 22 Hierarchical Clustering/119 Hierarchical Clustering Using Dendrograms.mp4 23MB
  113. 29 --------------------- Part 7 Natural Language Processing ---------------------/158 Natural Language Processing in Python - Step 7.mp4 22MB
  114. 34 Principal Component Analysis PCA/203 PCA in Python - Step 2.mp4 22MB
  115. 05 Multiple Linear Regression/044 Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4 22MB
  116. 29 --------------------- Part 7 Natural Language Processing ---------------------/164 Natural Language Processing in R - Step 2.mp4 22MB
  117. 17 Decision Tree Classification/100 Decision Tree Classification Intuition.mp4 22MB
  118. 10 Evaluating Regression Models Performance/065 Adjusted R-Squared Intuition.mp4 21MB
  119. 39 XGBoost/211 XGBoost in Python - Step 1.mp4 21MB
  120. 22 Hierarchical Clustering/123 HC in Python - Step 4.mp4 21MB
  121. 06 Polynomial Regression/051 Polynomial Regression in R - Step 1.mp4 21MB
  122. 04 Simple Linear Regression/022 Simple Linear Regression in Python - Step 3.mp4 21MB
  123. 19 Evaluating Classification Models Performance/109 CAP Curve.mp4 20MB
  124. 14 Support Vector Machine SVM/085 SVM Intuition.mp4 20MB
  125. 16 Naive Bayes/097 Naive Bayes Intuition Extras.mp4 19MB
  126. 29 --------------------- Part 7 Natural Language Processing ---------------------/160 Natural Language Processing in Python - Step 9.mp4 19MB
  127. 29 --------------------- Part 7 Natural Language Processing ---------------------/156 Natural Language Processing in Python - Step 5.mp4 19MB
  128. 31 Artificial Neural Networks/187 ANN in R - Step 2.mp4 18MB
  129. 06 Polynomial Regression/049 Polynomial Regression in Python - Step 4.mp4 18MB
  130. 12 Logistic Regression/075 Python Classification Template.mp4 18MB
  131. 12 Logistic Regression/081 R Classification Template.mp4 18MB
  132. 22 Hierarchical Clustering/118 Hierarchical Clustering How Dendrograms Work.mp4 17MB
  133. 29 --------------------- Part 7 Natural Language Processing ---------------------/170 Natural Language Processing in R - Step 8.mp4 17MB
  134. 29 --------------------- Part 7 Natural Language Processing ---------------------/165 Natural Language Processing in R - Step 3.mp4 17MB
  135. 12 Logistic Regression/070 Logistic Regression in Python - Step 1.mp4 17MB
  136. 32 Convolutional Neural Networks/196 CNN in Python - Step 7.mp4 17MB
  137. 05 Multiple Linear Regression/031 Multiple Linear Regression Intuition - Step 3.mp4 17MB
  138. 22 Hierarchical Clustering/117 Hierarchical Clustering Intuition.mp4 17MB
  139. 22 Hierarchical Clustering/122 HC in Python - Step 3.mp4 16MB
  140. 29 --------------------- Part 7 Natural Language Processing ---------------------/168 Natural Language Processing in R - Step 6.mp4 16MB
  141. 12 Logistic Regression/076 Logistic Regression in R - Step 1.mp4 16MB
  142. 15 Kernel SVM/091 Types of Kernel Functions.mp4 16MB
  143. 09 Random Forest Regression/061 Random Forest Regression Intuition.mp4 16MB
  144. 22 Hierarchical Clustering/121 HC in Python - Step 2.mp4 16MB
  145. 15 Kernel SVM/089 Mapping to a higher dimension.mp4 15MB
  146. 21 K-Means Clustering/113 K-Means Random Initialization Trap.mp4 15MB
  147. 19 Evaluating Classification Models Performance/106 False Positives False Negatives.mp4 15MB
  148. 31 Artificial Neural Networks/182 ANN in Python - Step 7.mp4 15MB
  149. 12 Logistic Regression/077 Logistic Regression in R - Step 2.mp4 15MB
  150. 31 Artificial Neural Networks/178 ANN in Python - Step 3.mp4 15MB
  151. 01 Welcome to the course/002 Why Machine Learning is the Future.mp4 14MB
  152. 12 Logistic Regression/073 Logistic Regression in Python - Step 4.mp4 14MB
  153. 22 Hierarchical Clustering/126 HC in R - Step 2.mp4 14MB
  154. 05 Multiple Linear Regression/042 Multiple Linear Regression in R - Step 3.mp4 14MB
  155. 22 Hierarchical Clustering/120 HC in Python - Step 1.mp4 14MB
  156. 22 Hierarchical Clustering/129 HC in R - Step 5.mp4 14MB
  157. 02 -------------------------- Part 1 Data Preprocessing --------------------------/008 Importing the Libraries.mp4 14MB
  158. 16 Naive Bayes/096 Naive Bayes Intuition Challenge Reveal.mp4 13MB
  159. 19 Evaluating Classification Models Performance/110 CAP Curve Analysis.mp4 13MB
  160. 05 Multiple Linear Regression/028 Dataset Business Problem Description.mp4 13MB
  161. 27 Upper Confidence Bound UCB/142 Upper Confidence Bound in Python - Step 4.mp4 12MB
  162. 32 Convolutional Neural Networks/194 CNN in Python - Step 5.mp4 12MB
  163. 32 Convolutional Neural Networks/195 CNN in Python - Step 6.mp4 12MB
  164. 31 Artificial Neural Networks/181 ANN in Python - Step 6.mp4 12MB
  165. 12 Logistic Regression/079 Logistic Regression in R - Step 4.mp4 12MB
  166. 04 Simple Linear Regression/024 Simple Linear Regression in R - Step 1.mp4 12MB
  167. 04 Simple Linear Regression/026 Simple Linear Regression in R - Step 3.mp4 11MB
  168. 28 Thompson Sampling/148 Thompson Sampling in Python - Step 2.mp4 11MB
  169. 12 Logistic Regression/071 Logistic Regression in Python - Step 2.mp4 11MB
  170. 04 Simple Linear Regression/018 Simple Linear Regression Intuition - Step 1.mp4 11MB
  171. 13 K-Nearest Neighbors K-NN/082 K-Nearest Neighbor Intuition.mp4 10MB
  172. 22 Hierarchical Clustering/128 HC in R - Step 4.mp4 10MB
  173. 22 Hierarchical Clustering/127 HC in R - Step 3.mp4 10MB
  174. 22 Hierarchical Clustering/124 HC in Python - Step 5.mp4 10MB
  175. 05 Multiple Linear Regression/035 Multiple Linear Regression in Python - Step 2.mp4 10MB
  176. 01 Welcome to the course/001 Applications of Machine Learning.mp4 10MB
  177. 10 Evaluating Regression Models Performance/064 R-Squared Intuition.mp4 10MB
  178. 31 Artificial Neural Networks/179 ANN in Python - Step 4.mp4 10MB
  179. 29 --------------------- Part 7 Natural Language Processing ---------------------/169 Natural Language Processing in R - Step 7.mp4 10MB
  180. 28 Thompson Sampling/150 Thompson Sampling in R - Step 2.mp4 10MB
  181. 27 Upper Confidence Bound UCB/146 Upper Confidence Bound in R - Step 4.mp4 10MB
  182. 06 Polynomial Regression/045 Polynomial Regression Intuition.mp4 9MB
  183. 32 Convolutional Neural Networks/197 CNN in Python - Step 8.mp4 9MB
  184. 19 Evaluating Classification Models Performance/107 Confusion Matrix.mp4 9MB
  185. 22 Hierarchical Clustering/125 HC in R - Step 1.mp4 9MB
  186. 29 --------------------- Part 7 Natural Language Processing ---------------------/157 Natural Language Processing in Python - Step 6.mp4 8MB
  187. 29 --------------------- Part 7 Natural Language Processing ---------------------/166 Natural Language Processing in R - Step 4.mp4 8MB
  188. 12 Logistic Regression/072 Logistic Regression in Python - Step 3.mp4 8MB
  189. 04 Simple Linear Regression/017 Dataset Business Problem Description.mp4 8MB
  190. 02 -------------------------- Part 1 Data Preprocessing --------------------------/007 Get the dataset.mp4 7MB
  191. 32 Convolutional Neural Networks/191 CNN in Python - Step 2.mp4 7MB
  192. 15 Kernel SVM/088 Kernel SVM Intuition.mp4 6MB
  193. 04 Simple Linear Regression/019 Simple Linear Regression Intuition - Step 2.mp4 6MB
  194. 29 --------------------- Part 7 Natural Language Processing ---------------------/167 Natural Language Processing in R - Step 5.mp4 6MB
  195. 05 Multiple Linear Regression/032 Multiple Linear Regression Intuition - Step 4.mp4 5MB
  196. 19 Evaluating Classification Models Performance/108 Accuracy Paradox.mp4 4MB
  197. 29 --------------------- Part 7 Natural Language Processing ---------------------/154 Natural Language Processing in Python - Step 3.mp4 4MB
  198. 02 -------------------------- Part 1 Data Preprocessing --------------------------/006 Welcome to Part 1 - Data Preprocessing.mp4 4MB
  199. 32 Convolutional Neural Networks/192 CNN in Python - Step 3.mp4 3MB
  200. 05 Multiple Linear Regression/030 Multiple Linear Regression Intuition - Step 2.mp4 2MB
  201. 05 Multiple Linear Regression/029 Multiple Linear Regression Intuition - Step 1.mp4 2MB
  202. 31 Artificial Neural Networks/attached_files/176 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras/Artificial-Neural-Networks.zip 1MB
  203. 31 Artificial Neural Networks/attached_files/186 ANN in R - Step 1/Artificial-Neural-Networks.zip 1MB
  204. 27 Upper Confidence Bound UCB/attached_files/139 Upper Confidence Bound in Python - Step 1/UCB.zip 1MB
  205. 27 Upper Confidence Bound UCB/attached_files/143 Upper Confidence Bound in R - Step 1/UCB.zip 1MB
  206. 28 Thompson Sampling/attached_files/147 Thompson Sampling in Python - Step 1/Thompson-Sampling.zip 1009KB
  207. 28 Thompson Sampling/attached_files/149 Thompson Sampling in R - Step 1/Thompson-Sampling.zip 1009KB
  208. 05 Multiple Linear Regression/attached_files/033 Multiple Linear Regression Intuition - Step 5/Step-by-step-Blueprints-For-Building-Models.pdf 769KB
  209. 39 XGBoost/attached_files/211 XGBoost in Python - Step 1/XGBoost.zip 259KB
  210. 24 Apriori/attached_files/134 Apriori in Python - Step 1/Apriori-Python.zip 53KB
  211. 24 Apriori/attached_files/131 Apriori in R - Step 1/Apriori.zip 49KB
  212. 25 Eclat/attached_files/137 Eclat in R/Eclat.zip 49KB
  213. 16 Naive Bayes/captions/094 Bayes Theorem-EN.srt 31KB
  214. 18 Random Forest Classification/captions/105 Random Forest Classification in R-EN.srt 29KB
  215. 08 Decision Tree Regression/captions/060 Decision Tree Regression in R-EN.srt 29KB
  216. 29 --------------------- Part 7 Natural Language Processing ---------------------/attached_files/152 Natural Language Processing in Python - Step 1/Natural-Language-Processing.zip 28KB
  217. 29 --------------------- Part 7 Natural Language Processing ---------------------/attached_files/163 Natural Language Processing in R - Step 1/Natural-Language-Processing.zip 28KB
  218. 06 Polynomial Regression/captions/048 Polynomial Regression in Python - Step 3-EN.srt 28KB
  219. 24 Apriori/captions/133 Apriori in R - Step 3-EN.srt 28KB
  220. 24 Apriori/captions/131 Apriori in R - Step 1-EN.srt 28KB
  221. 07 Support Vector Regression SVR/captions/056 SVR in Python-EN.srt 27KB
  222. 06 Polynomial Regression/captions/053 Polynomial Regression in R - Step 3-EN.srt 27KB
  223. 18 Random Forest Classification/captions/104 Random Forest Classification in Python-EN.srt 27KB
  224. 12 Logistic Regression/captions/074 Logistic Regression in Python - Step 5-EN.srt 26KB
  225. 12 Logistic Regression/captions/080 Logistic Regression in R - Step 5-EN.srt 26KB
  226. 17 Decision Tree Classification/captions/102 Decision Tree Classification in R-EN.srt 26KB
  227. 21 K-Means Clustering/captions/115 K-Means Clustering in Python-EN.srt 25KB
  228. 09 Random Forest Regression/captions/063 Random Forest Regression in R-EN.srt 25KB
  229. 15 Kernel SVM/captions/092 Kernel SVM in Python-EN.srt 25KB
  230. 24 Apriori/captions/134 Apriori in Python - Step 1-EN.srt 25KB
  231. 05 Multiple Linear Regression/captions/043 Multiple Linear Regression in R - Backward Elimination - HOMEWORK-EN.srt 25KB
  232. 09 Random Forest Regression/captions/062 Random Forest Regression in Python-EN.srt 24KB
  233. 02 -------------------------- Part 1 Data Preprocessing --------------------------/captions/013 Splitting the Dataset into the Training set and Test set-EN.srt 24KB
  234. 02 -------------------------- Part 1 Data Preprocessing --------------------------/captions/012 Categorical Data-EN.srt 24KB
  235. 15 Kernel SVM/captions/093 Kernel SVM in R-EN.srt 23KB
  236. 05 Multiple Linear Regression/captions/034 Multiple Linear Regression in Python - Step 1-EN.srt 22KB
  237. 04 Simple Linear Regression/captions/027 Simple Linear Regression in R - Step 4-EN.srt 21KB
  238. 08 Decision Tree Regression/captions/059 Decision Tree Regression in Python-EN.srt 21KB
  239. 05 Multiple Linear Regression/captions/033 Multiple Linear Regression Intuition - Step 5-EN.srt 21KB
  240. 02 -------------------------- Part 1 Data Preprocessing --------------------------/captions/011 Missing Data-EN.srt 21KB
  241. 21 K-Means Clustering/captions/112 K-Means Clustering Intuition-EN.srt 21KB
  242. 16 Naive Bayes/captions/095 Naive Bayes Intuition-EN.srt 21KB
  243. 02 -------------------------- Part 1 Data Preprocessing --------------------------/captions/014 Feature Scaling-EN.srt 21KB
  244. 13 K-Nearest Neighbors K-NN/captions/084 K-NN in R-EN.srt 21KB
  245. 24 Apriori/captions/132 Apriori in R - Step 2-EN.srt 21KB
  246. 24 Apriori/captions/135 Apriori in Python - Step 2-EN.srt 20KB
  247. 04 Simple Linear Regression/captions/023 Simple Linear Regression in Python - Step 4-EN.srt 20KB
  248. 16 Naive Bayes/captions/099 Naive Bayes in R-EN.srt 19KB
  249. 13 K-Nearest Neighbors K-NN/captions/083 K-NN in Python-EN.srt 19KB
  250. 05 Multiple Linear Regression/captions/037 Multiple Linear Regression in Python - Backward Elimination - Preparation-EN.srt 18KB
  251. 05 Multiple Linear Regression/captions/038 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK-EN.srt 18KB
  252. 24 Apriori/captions/136 Apriori in Python - Step 3-EN.srt 17KB
  253. 21 K-Means Clustering/captions/116 K-Means Clustering in R-EN.srt 17KB
  254. 17 Decision Tree Classification/captions/101 Decision Tree Classification in Python-EN.srt 17KB
  255. 14 Support Vector Machine SVM/captions/086 SVM in Python-EN.srt 17KB
  256. 06 Polynomial Regression/captions/055 R Regression Template-EN.srt 17KB
  257. 07 Support Vector Regression SVR/captions/057 SVR in R-EN.srt 17KB
  258. 02 -------------------------- Part 1 Data Preprocessing --------------------------/captions/009 Importing the Dataset-EN.srt 17KB
  259. 21 K-Means Clustering/captions/114 K-Means Selecting The Number Of Clusters-EN.srt 17KB
  260. 14 Support Vector Machine SVM/captions/087 SVM in R-EN.srt 16KB
  261. 22 Hierarchical Clustering/captions/119 Hierarchical Clustering Using Dendrograms-EN.srt 16KB
  262. 06 Polynomial Regression/captions/046 Polynomial Regression in Python - Step 1-EN.srt 16KB
  263. 06 Polynomial Regression/captions/047 Polynomial Regression in Python - Step 2-EN.srt 15KB
  264. 08 Decision Tree Regression/captions/058 Decision Tree Regression Intuition-EN.srt 15KB
  265. 06 Polynomial Regression/captions/050 Python Regression Template-EN.srt 15KB
  266. 19 Evaluating Classification Models Performance/captions/109 CAP Curve-EN.srt 15KB
  267. 16 Naive Bayes/captions/097 Naive Bayes Intuition Extras-EN.srt 14KB
  268. 14 Support Vector Machine SVM/captions/085 SVM Intuition-EN.srt 14KB
  269. 25 Eclat/captions/137 Eclat in R-EN.srt 14KB
  270. 04 Simple Linear Regression/captions/020 Simple Linear Regression in Python - Step 1-EN.srt 14KB
  271. 05 Multiple Linear Regression/captions/041 Multiple Linear Regression in R - Step 2-EN.srt 14KB
  272. 06 Polynomial Regression/captions/054 Polynomial Regression in R - Step 4-EN.srt 14KB
  273. 06 Polynomial Regression/captions/052 Polynomial Regression in R - Step 2-EN.srt 14KB
  274. 22 Hierarchical Clustering/captions/117 Hierarchical Clustering Intuition-EN.srt 13KB
  275. 10 Evaluating Regression Models Performance/captions/065 Adjusted R-Squared Intuition-EN.srt 13KB
  276. 22 Hierarchical Clustering/captions/118 Hierarchical Clustering How Dendrograms Work-EN.srt 13KB
  277. 05 Multiple Linear Regression/captions/039 Multiple Linear Regression in Python - Backward Elimination - Homework Solution-EN.srt 13KB
  278. 02 -------------------------- Part 1 Data Preprocessing --------------------------/captions/015 And here is our Data Preprocessing Template-EN.srt 13KB
  279. 06 Polynomial Regression/captions/051 Polynomial Regression in R - Step 1-EN.srt 13KB
  280. 16 Naive Bayes/captions/098 Naive Bayes in Python-EN.srt 12KB
  281. 10 Evaluating Regression Models Performance/captions/067 Interpreting Linear Regression Coefficients-EN.srt 12KB
  282. 21 K-Means Clustering/captions/113 K-Means Random Initialization Trap-EN.srt 12KB
  283. 10 Evaluating Regression Models Performance/captions/066 Evaluating Regression Models Performance - Homeworks Final Part-EN.srt 12KB
  284. 17 Decision Tree Classification/captions/100 Decision Tree Classification Intuition-EN.srt 12KB
  285. 04 Simple Linear Regression/captions/021 Simple Linear Regression in Python - Step 2-EN.srt 11KB
  286. 01 Welcome to the course/captions/004 Installing Python and Anaconda MAC Windows-EN.srt 11KB
  287. 05 Multiple Linear Regression/captions/044 Multiple Linear Regression in R - Backward Elimination - Homework Solution-EN.srt 11KB
  288. 05 Multiple Linear Regression/captions/040 Multiple Linear Regression in R - Step 1-EN.srt 10KB
  289. 19 Evaluating Classification Models Performance/captions/106 False Positives False Negatives-EN.srt 10KB
  290. 05 Multiple Linear Regression/captions/031 Multiple Linear Regression Intuition - Step 3-EN.srt 10KB
  291. 09 Random Forest Regression/captions/061 Random Forest Regression Intuition-EN.srt 9KB
  292. 04 Simple Linear Regression/captions/022 Simple Linear Regression in Python - Step 3-EN.srt 9KB
  293. 18 Random Forest Classification/attached_files/104 Random Forest Classification in Python/Random-Forest-Classification.zip 9KB
  294. 18 Random Forest Classification/attached_files/105 Random Forest Classification in R/Random-Forest-Classification.zip 9KB
  295. 17 Decision Tree Classification/attached_files/101 Decision Tree Classification in Python/Decision-Tree-Classification.zip 9KB
  296. 17 Decision Tree Classification/attached_files/102 Decision Tree Classification in R/Decision-Tree-Classification.zip 9KB
  297. 22 Hierarchical Clustering/captions/121 HC in Python - Step 2-EN.srt 9KB
  298. 16 Naive Bayes/captions/096 Naive Bayes Intuition Challenge Reveal-EN.srt 9KB
  299. 13 K-Nearest Neighbors K-NN/attached_files/083 K-NN in Python/K-Nearest-Neighbors.zip 9KB
  300. 13 K-Nearest Neighbors K-NN/attached_files/084 K-NN in R/K-Nearest-Neighbors.zip 9KB
  301. 15 Kernel SVM/attached_files/092 Kernel SVM in Python/Kernel-SVM.zip 8KB
  302. 15 Kernel SVM/attached_files/093 Kernel SVM in R/Kernel-SVM.zip 8KB
  303. 16 Naive Bayes/attached_files/098 Naive Bayes in Python/Naive-Bayes.zip 8KB
  304. 16 Naive Bayes/attached_files/099 Naive Bayes in R/Naive-Bayes.zip 8KB
  305. 19 Evaluating Classification Models Performance/captions/110 CAP Curve Analysis-EN.srt 8KB
  306. 14 Support Vector Machine SVM/attached_files/086 SVM in Python/SVM.zip 8KB
  307. 14 Support Vector Machine SVM/attached_files/087 SVM in R/SVM.zip 8KB
  308. 01 Welcome to the course/captions/003 Installing R and R Studio MAC Windows-EN.srt 8KB
  309. 04 Simple Linear Regression/captions/025 Simple Linear Regression in R - Step 2-EN.srt 8KB
  310. 12 Logistic Regression/captions/076 Logistic Regression in R - Step 1-EN.srt 8KB
  311. 06 Polynomial Regression/captions/049 Polynomial Regression in Python - Step 4-EN.srt 8KB
  312. 12 Logistic Regression/captions/070 Logistic Regression in Python - Step 1-EN.srt 8KB
  313. 38 Model Selection/attached_files/208 k-Fold Cross Validation in Python/Model-Selection.zip 8KB
  314. 38 Model Selection/attached_files/209 Grid Search in Python - Step 1/Model-Selection.zip 8KB
  315. 04 Simple Linear Regression/captions/018 Simple Linear Regression Intuition - Step 1-EN.srt 7KB
  316. 05 Multiple Linear Regression/captions/036 Multiple Linear Regression in Python - Step 3-EN.srt 7KB
  317. 22 Hierarchical Clustering/captions/126 HC in R - Step 2-EN.srt 7KB
  318. 13 K-Nearest Neighbors K-NN/captions/082 K-Nearest Neighbor Intuition-EN.srt 7KB
  319. 06 Polynomial Regression/captions/045 Polynomial Regression Intuition-EN.srt 7KB
  320. 22 Hierarchical Clustering/captions/122 HC in Python - Step 3-EN.srt 7KB
  321. 34 Principal Component Analysis PCA/attached_files/202 PCA in Python - Step 1/PCA.zip 7KB
  322. 04 Simple Linear Regression/captions/024 Simple Linear Regression in R - Step 1-EN.srt 7KB
  323. 22 Hierarchical Clustering/captions/120 HC in Python - Step 1-EN.srt 7KB
  324. 19 Evaluating Classification Models Performance/captions/107 Confusion Matrix-EN.srt 7KB
  325. 12 Logistic Regression/captions/078 Logistic Regression in R - Step 3-EN.srt 7KB
  326. 10 Evaluating Regression Models Performance/captions/064 R-Squared Intuition-EN.srt 6KB
  327. 18 Random Forest Classification/captions/103 Random Forest Classification Intuition-EN.srt 6KB
  328. 35 Linear Discriminant Analysis LDA/attached_files/205 LDA in Python/LDA.zip 6KB
  329. 12 Logistic Regression/captions/073 Logistic Regression in Python - Step 4-EN.srt 6KB
  330. 05 Multiple Linear Regression/captions/042 Multiple Linear Regression in R - Step 3-EN.srt 6KB
  331. 12 Logistic Regression/attached_files/070 Logistic Regression in Python - Step 1/Logistic-Regression.zip 6KB
  332. 12 Logistic Regression/attached_files/076 Logistic Regression in R - Step 1/Logistic-Regression.zip 6KB
  333. 22 Hierarchical Clustering/captions/124 HC in Python - Step 5-EN.srt 6KB
  334. 12 Logistic Regression/captions/081 R Classification Template-EN.srt 6KB
  335. 22 Hierarchical Clustering/captions/123 HC in Python - Step 4-EN.srt 6KB
  336. 22 Hierarchical Clustering/attached_files/120 HC in Python - Step 1/Hierarchical-Clustering.zip 6KB
  337. 22 Hierarchical Clustering/attached_files/125 HC in R - Step 1/Hierarchical-Clustering.zip 6KB
  338. 22 Hierarchical Clustering/captions/125 HC in R - Step 1-EN.srt 6KB
  339. 21 K-Means Clustering/attached_files/115 K-Means Clustering in Python/K-Means.zip 5KB
  340. 21 K-Means Clustering/attached_files/116 K-Means Clustering in R/K-Means.zip 5KB
  341. 12 Logistic Regression/captions/075 Python Classification Template-EN.srt 5KB
  342. 36 Kernel PCA/attached_files/206 Kernel PCA in Python/Kernel-PCA.zip 5KB
  343. 05 Multiple Linear Regression/attached_files/034 Multiple Linear Regression in Python - Step 1/Multiple-Linear-Regression.zip 5KB
  344. 05 Multiple Linear Regression/attached_files/040 Multiple Linear Regression in R - Step 1/Multiple-Linear-Regression.zip 5KB
  345. 08 Decision Tree Regression/attached_files/059 Decision Tree Regression in Python/Decision-Tree-Regression.zip 5KB
  346. 08 Decision Tree Regression/attached_files/060 Decision Tree Regression in R/Decision-Tree-Regression.zip 5KB
  347. 09 Random Forest Regression/attached_files/062 Random Forest Regression in Python/Random-Forest-Regression.zip 5KB
  348. 09 Random Forest Regression/attached_files/063 Random Forest Regression in R/Random-Forest-Regression.zip 5KB
  349. 05 Multiple Linear Regression/captions/028 Dataset Business Problem Description-EN.srt 5KB
  350. 05 Multiple Linear Regression/attached_files/039 Multiple Linear Regression in Python - Backward Elimination - Homework Solution/Homework-Solutions.zip 5KB
  351. 05 Multiple Linear Regression/attached_files/044 Multiple Linear Regression in R - Backward Elimination - Homework Solution/Homework-Solutions.zip 5KB
  352. 04 Simple Linear Regression/captions/026 Simple Linear Regression in R - Step 3-EN.srt 5KB
  353. 07 Support Vector Regression SVR/attached_files/056 SVR in Python/SVR.zip 5KB
  354. 07 Support Vector Regression SVR/attached_files/057 SVR in R/SVR.zip 5KB
  355. 06 Polynomial Regression/attached_files/046 Polynomial Regression in Python - Step 1/Polynomial-Regression.zip 5KB
  356. 06 Polynomial Regression/attached_files/051 Polynomial Regression in R - Step 1/Polynomial-Regression.zip 5KB
  357. 05 Multiple Linear Regression/quizzes/003 Multiple Linear Regression.html 5KB
  358. 02 -------------------------- Part 1 Data Preprocessing --------------------------/quizzes/001 Data Preprocessing.html 5KB
  359. 12 Logistic Regression/captions/071 Logistic Regression in Python - Step 2-EN.srt 4KB
  360. 04 Simple Linear Regression/quizzes/002 Simple Linear Regression.html 4KB
  361. 22 Hierarchical Clustering/captions/127 HC in R - Step 3-EN.srt 4KB
  362. 22 Hierarchical Clustering/quizzes/007 Hierarchical Clustering.html 4KB
  363. 04 Simple Linear Regression/attached_files/020 Simple Linear Regression in Python - Step 1/Simple-Linear-Regression.zip 4KB
  364. 04 Simple Linear Regression/attached_files/024 Simple Linear Regression in R - Step 1/Simple-Linear-Regression.zip 4KB
  365. 21 K-Means Clustering/quizzes/006 K-Means Clustering.html 4KB
  366. 12 Logistic Regression/quizzes/004 Logistic Regression.html 4KB
  367. 13 K-Nearest Neighbors K-NN/quizzes/005 K-Nearest Neighbor.html 4KB
  368. 04 Simple Linear Regression/captions/019 Simple Linear Regression Intuition - Step 2-EN.srt 4KB
  369. 12 Logistic Regression/captions/077 Logistic Regression in R - Step 2-EN.srt 4KB
  370. 04 Simple Linear Regression/captions/017 Dataset Business Problem Description-EN.srt 4KB
  371. 22 Hierarchical Clustering/captions/129 HC in R - Step 5-EN.srt 4KB
  372. 12 Logistic Regression/captions/072 Logistic Regression in Python - Step 3-EN.srt 4KB
  373. 05 Multiple Linear Regression/captions/035 Multiple Linear Regression in Python - Step 2-EN.srt 4KB
  374. 12 Logistic Regression/captions/079 Logistic Regression in R - Step 4-EN.srt 4KB
  375. 22 Hierarchical Clustering/captions/128 HC in R - Step 4-EN.srt 3KB
  376. 40 Bonus Lectures/214 YOUR SPECIAL BONUS.html 3KB
  377. 05 Multiple Linear Regression/captions/032 Multiple Linear Regression Intuition - Step 4-EN.srt 3KB
  378. 02 -------------------------- Part 1 Data Preprocessing --------------------------/attached_files/012 Categorical Data/Categorical-Data.zip 3KB
  379. 12 Logistic Regression/attached_files/075 Python Classification Template/Classification-Template.zip 3KB
  380. 12 Logistic Regression/attached_files/081 R Classification Template/Classification-Template.zip 3KB
  381. 19 Evaluating Classification Models Performance/captions/108 Accuracy Paradox-EN.srt 3KB
  382. 06 Polynomial Regression/attached_files/050 Python Regression Template/Regression-Template.zip 3KB
  383. 06 Polynomial Regression/attached_files/055 R Regression Template/Regression-Template.zip 3KB
  384. 32 Convolutional Neural Networks/200 CNN in R.html 3KB
  385. 02 -------------------------- Part 1 Data Preprocessing --------------------------/attached_files/015 And here is our Data Preprocessing Template/Data-Preprocessing-Template.zip 2KB
  386. 02 -------------------------- Part 1 Data Preprocessing --------------------------/captions/006 Welcome to Part 1 - Data Preprocessing-EN.srt 2KB
  387. 29 --------------------- Part 7 Natural Language Processing ---------------------/151 Welcome to Part 7 - Natural Language Processing.html 2KB
  388. 02 -------------------------- Part 1 Data Preprocessing --------------------------/attached_files/011 Missing Data/Missing-Data.zip 2KB
  389. 02 -------------------------- Part 1 Data Preprocessing --------------------------/010 For Python learners summary of Object-oriented programming classes objects.html 2KB
  390. 29 --------------------- Part 7 Natural Language Processing ---------------------/173 Homework Challenge.html 2KB
  391. 29 --------------------- Part 7 Natural Language Processing ---------------------/162 Homework Challenge.html 2KB
  392. 33 ----------------------- Part 9 Dimensionality Reduction -----------------------/201 Welcome to Part 9 - Dimensionality Reduction.html 2KB
  393. 05 Multiple Linear Regression/captions/029 Multiple Linear Regression Intuition - Step 1-EN.srt 1KB
  394. 01 Welcome to the course/005 BONUS Meet your instructors.html 1KB
  395. 05 Multiple Linear Regression/captions/030 Multiple Linear Regression Intuition - Step 2-EN.srt 1KB
  396. 37 --------------------- Part 10 Model Selection Boosting ---------------------/207 Welcome to Part 10 - Model Selection Boosting.html 1KB
  397. 03 ------------------------------ Part 2 Regression ------------------------------/016 Welcome to Part 2 - Regression.html 1KB
  398. 26 ------------------------ Part 6 Reinforcement Learning ------------------------/138 Welcome to Part 6 - Reinforcement Learning.html 1KB
  399. 11 ---------------------------- Part 3 Classification ----------------------------/068 Welcome to Part 3 - Classification.html 1KB
  400. 30 ---------------------------- Part 8 Deep Learning ----------------------------/174 Welcome to Part 8 - Deep Learning.html 1KB
  401. 20 ---------------------------- Part 4 Clustering ----------------------------/111 Welcome to Part 4 - Clustering.html 1004B
  402. 39 XGBoost/213 Download all the Codes and Datasets Here.html 888B
  403. 23 ---------------------- Part 5 Association Rule Learning ----------------------/130 Welcome to Part 5 - Association Rule Learning.html 713B
  404. 02 -------------------------- Part 1 Data Preprocessing --------------------------/attached_files/007 Get the dataset/Data.csv 226B