[] Udemy - Feature Engineering for Machine Learning 收录时间:2023-08-17 19:48:15 文件大小:3GB 下载次数:1 最近下载:2023-08-17 19:48:15 磁力链接: magnet:?xt=urn:btih:6501f716b32343b4eeac5702d53c75e9963fc1ae 立即下载 复制链接 文件列表 13 - Assembling a feature engineering pipeline/004 Regression pipeline.mp4 101MB 06 - Categorical Variable Encoding/017 Weight of Evidence Demo.mp4 98MB 04 - Missing Data Imputation/008 Random sample imputation.mp4 88MB 06 - Categorical Variable Encoding/004 One-hot-encoding Demo.mp4 86MB 13 - Assembling a feature engineering pipeline/003 Classification pipeline.mp4 77MB 06 - Categorical Variable Encoding/018 Comparison of categorical variable encoding.mp4 76MB 08 - Discretisation/012 Discretisation with decision trees using Scikit-learn.mp4 76MB 08 - Discretisation/004 Equal-width discretisation Demo.mp4 68MB 06 - Categorical Variable Encoding/012 Target guided ordinal encoding Demo.mp4 66MB 04 - Missing Data Imputation/016 Automatic determination of imputation method with Sklearn.mp4 65MB 06 - Categorical Variable Encoding/020 Rare label encoding Demo.mp4 61MB 13 - Assembling a feature engineering pipeline/005 Feature engineering pipeline with cross-validation.mp4 54MB 06 - Categorical Variable Encoding/006 One hot encoding of top categories Demo.mp4 54MB 01 - Introduction/001 Course curriculum overview.mp4 50MB 06 - Categorical Variable Encoding/008 Ordinal encoding Demo.mp4 50MB 10 - Feature Scaling/013 Scaling to vector unit length Demo.mp4 45MB 07 - Variable Transformation/003 Variable Transformation with Scikit-learn.mp4 44MB 10 - Feature Scaling/005 Mean normalisation Demo.mp4 43MB 07 - Variable Transformation/002 Variable Transformation with Numpy and SciPy.mp4 42MB 03 - Variable Characteristics/005 Linear models assumptions.mp4 41MB 09 - Outlier Handling/003 Outlier capping with IQR.mp4 41MB 08 - Discretisation/006 Equal-frequency discretisation Demo.mp4 41MB 10 - Feature Scaling/003 Standardisation Demo.mp4 40MB 12 - Engineering datetime variables/002 Engineering dates Demo.mp4 40MB 11 - Engineering mixed variables/002 Engineering mixed variables Demo.mp4 39MB 04 - Missing Data Imputation/002 Complete Case Analysis.mp4 39MB 04 - Missing Data Imputation/006 Frequent category imputation.mp4 38MB 04 - Missing Data Imputation/011 Mean or median imputation with Scikit-learn.mp4 38MB 09 - Outlier Handling/002 Outlier trimming.mp4 38MB 04 - Missing Data Imputation/025 CCA with Feature-engine.mp4 37MB 04 - Missing Data Imputation/012 Arbitrary value imputation with Scikit-learn.mp4 36MB 06 - Categorical Variable Encoding/014 Mean encoding Demo.mp4 36MB 04 - Missing Data Imputation/013 Frequent category imputation with Scikit-learn.mp4 35MB 06 - Categorical Variable Encoding/001 Categorical encoding Introduction.mp4 34MB 08 - Discretisation/010 Discretisation plus encoding Demo.mp4 34MB 13 - Assembling a feature engineering pipeline/001 Putting it all together.mp4 33MB 09 - Outlier Handling/001 Outlier Engineering Intro.mp4 32MB 04 - Missing Data Imputation/018 Mean or median imputation with Feature-engine.mp4 32MB 04 - Missing Data Imputation/004 Arbitrary value imputation.mp4 31MB 09 - Outlier Handling/004 Outlier capping with mean and std.mp4 30MB 04 - Missing Data Imputation/024 Adding a missing indicator with Feature-engine.mp4 28MB 05 - Multivariate Missing Data Imputation/006 MICE and missForest - Demo.mp4 28MB 10 - Feature Scaling/009 MaxAbsScaling Demo.mp4 27MB 04 - Missing Data Imputation/017 Introduction to Feature-engine.mp4 27MB 04 - Missing Data Imputation/020 End of distribution imputation with Feature-engine.mp4 26MB 04 - Missing Data Imputation/003 Mean or median imputation.mp4 26MB 04 - Missing Data Imputation/019 Arbitrary value imputation with Feature-engine.mp4 25MB 10 - Feature Scaling/007 MinMaxScaling Demo.mp4 25MB 08 - Discretisation/013 Discretisation with decision trees using Feature-engine.mp4 25MB 12 - Engineering datetime variables/003 Engineering time variables and different timezones.mp4 24MB 04 - Missing Data Imputation/007 Missing category imputation.mp4 23MB 04 - Missing Data Imputation/015 Adding a missing indicator with Scikit-learn.mp4 23MB 06 - Categorical Variable Encoding/015 Probability ratio encoding.mp4 23MB 03 - Variable Characteristics/003 Cardinality - categorical variables.mp4 22MB 13 - Assembling a feature engineering pipeline/002 Feature Engineering Pipeline.mp4 22MB 07 - Variable Transformation/004 Variable transformation with Feature-engine.mp4 22MB 03 - Variable Characteristics/002 Missing data.mp4 21MB 04 - Missing Data Imputation/010 Imputation with Scikit-learn.mp4 21MB 01 - Introduction/002 Course requirements.mp4 21MB 08 - Discretisation/011 Discretisation with classification trees.mp4 20MB 04 - Missing Data Imputation/014 Missing category imputation with Scikit-learn.mp4 20MB 04 - Missing Data Imputation/022 Missing category imputation with Feature-engine.mp4 20MB 05 - Multivariate Missing Data Imputation/003 KNN imputation - Demo.mp4 19MB 08 - Discretisation/014 Domain knowledge discretisation.mp4 19MB 03 - Variable Characteristics/008 Outliers.mp4 19MB 04 - Missing Data Imputation/005 End of distribution imputation.mp4 18MB 04 - Missing Data Imputation/001 Introduction to missing data imputation.mp4 18MB 04 - Missing Data Imputation/023 Random sample imputation with Feature-engine.mp4 17MB 06 - Categorical Variable Encoding/010 Count encoding Demo.mp4 17MB 08 - Discretisation/008 K-means discretisation Demo.mp4 16MB 10 - Feature Scaling/011 Robust Scaling Demo.mp4 16MB 08 - Discretisation/001 Discretisation Introduction.mp4 15MB 05 - Multivariate Missing Data Imputation/004 MICE.mp4 15MB 09 - Outlier Handling/006 Arbitrary capping.mp4 15MB 03 - Variable Characteristics/007 Variable distribution.mp4 15MB 02 - Variable Types/002 Numerical variables.mp4 15MB 04 - Missing Data Imputation/009 Adding a missing indicator.mp4 15MB 03 - Variable Characteristics/004 Rare labels - categorical variables.mp4 15MB 06 - Categorical Variable Encoding/021 Binary encoding and feature hashing.mp4 14MB 06 - Categorical Variable Encoding/002 One hot encoding.mp4 14MB 12 - Engineering datetime variables/001 Engineering datetime variables.mp4 13MB 10 - Feature Scaling/012 Scaling to vector unit length.mp4 13MB 11 - Engineering mixed variables/001 Engineering mixed variables.mp4 12MB 10 - Feature Scaling/002 Standardisation.mp4 12MB 09 - Outlier Handling/005 Outlier capping with quantiles.mp4 10MB 06 - Categorical Variable Encoding/019 Rare label encoding.mp4 10MB 06 - Categorical Variable Encoding/016 Weight of evidence (WoE).mp4 10MB 02 - Variable Types/005 sample-s2.csv 10MB 05 - Multivariate Missing Data Imputation/002 KNN imputation.mp4 10MB 08 - Discretisation/005 Equal-frequency discretisation.mp4 9MB 07 - Variable Transformation/001 Variable Transformation Introduction.mp4 9MB 10 - Feature Scaling/001 Feature scaling Introduction.mp4 9MB 06 - Categorical Variable Encoding/005 One hot encoding of top categories.mp4 9MB 08 - Discretisation/002 Equal-width discretisation.mp4 9MB 10 - Feature Scaling/004 Mean normalisation.mp4 9MB 08 - Discretisation/007 K-means discretisation.mp4 8MB 02 - Variable Types/003 Categorical variables.mp4 8MB 05 - Multivariate Missing Data Imputation/001 Multivariate imputation.mp4 7MB 10 - Feature Scaling/006 Scaling to minimum and maximum values.mp4 7MB 03 - Variable Characteristics/009 Variable magnitude.mp4 7MB 03 - Variable Characteristics/001 Variable characteristics.mp4 7MB 06 - Categorical Variable Encoding/011 Target guided ordinal encoding.mp4 7MB 06 - Categorical Variable Encoding/009 Count or frequency encoding.mp4 7MB 10 - Feature Scaling/010 Scaling to median and quantiles.mp4 7MB 10 - Feature Scaling/008 Maximum absolute scaling.mp4 7MB 08 - Discretisation/009 Discretisation plus categorical encoding.mp4 6MB 01 - Introduction/005 Course material.mp4 6MB 02 - Variable Types/001 Variables Intro.mp4 5MB 04 - Missing Data Imputation/021 Frequent category imputation with Feature-engine.mp4 5MB 06 - Categorical Variable Encoding/013 Mean encoding.mp4 5MB 06 - Categorical Variable Encoding/007 Ordinal encoding Label encoding.mp4 5MB 02 - Variable Types/005 Mixed variables.mp4 5MB 02 - Variable Types/004 Date and time variables.mp4 4MB 01 - Introduction/009 Moving forward.mp4 4MB 01 - Introduction/007 Datasets.zip 3MB 05 - Multivariate Missing Data Imputation/005 missForest.mp4 2MB 03 - Variable Characteristics/010 ML-Comparison.pdf 298KB 04 - Missing Data Imputation/026 NA-methods-Comparison.pdf 274KB 04 - Missing Data Imputation/008 Random sample imputation_en.srt 18KB 06 - Categorical Variable Encoding/004 One-hot-encoding Demo_en.srt 18KB 13 - Assembling a feature engineering pipeline/004 Regression pipeline_en.srt 17KB 06 - Categorical Variable Encoding/017 Weight of Evidence Demo_en.srt 17KB 13 - Assembling a feature engineering pipeline/003 Classification pipeline_en.srt 17KB 08 - Discretisation/012 Discretisation with decision trees using Scikit-learn_en.srt 14KB 06 - Categorical Variable Encoding/018 Comparison of categorical variable encoding_en.srt 13KB 08 - Discretisation/004 Equal-width discretisation Demo_en.srt 13KB 06 - Categorical Variable Encoding/020 Rare label encoding Demo_en.srt 12KB 03 - Variable Characteristics/005 Linear models assumptions_en.srt 11KB 13 - Assembling a feature engineering pipeline/002 Feature Engineering Pipeline_en.srt 11KB 03 - Variable Characteristics/008 Outliers_en.srt 11KB 04 - Missing Data Imputation/003 Mean or median imputation_en.srt 10KB 06 - Categorical Variable Encoding/006 One hot encoding of top categories Demo_en.srt 10KB 06 - Categorical Variable Encoding/008 Ordinal encoding Demo_en.srt 10KB 06 - Categorical Variable Encoding/012 Target guided ordinal encoding Demo_en.srt 10KB 12 - Engineering datetime variables/002 Engineering dates Demo_en.srt 9KB 04 - Missing Data Imputation/016 Automatic determination of imputation method with Sklearn_en.srt 9KB 03 - Variable Characteristics/002 Missing data_en.srt 9KB 13 - Assembling a feature engineering pipeline/001 Putting it all together_en.srt 9KB 04 - Missing Data Imputation/004 Arbitrary value imputation_en.srt 9KB 13 - Assembling a feature engineering pipeline/005 Feature engineering pipeline with cross-validation_en.srt 9KB 07 - Variable Transformation/002 Variable Transformation with Numpy and SciPy_en.srt 9KB 04 - Missing Data Imputation/002 Complete Case Analysis_en.srt 9KB 04 - Missing Data Imputation/006 Frequent category imputation_en.srt 9KB 05 - Multivariate Missing Data Imputation/003 KNN imputation - Demo_en.srt 9KB 05 - Multivariate Missing Data Imputation/004 MICE_en.srt 8KB 04 - Missing Data Imputation/025 CCA with Feature-engine_en.srt 8KB 09 - Outlier Handling/002 Outlier trimming_en.srt 8KB 04 - Missing Data Imputation/017 Introduction to Feature-engine_en.srt 8KB 06 - Categorical Variable Encoding/001 Categorical encoding Introduction_en.srt 8KB 07 - Variable Transformation/003 Variable Transformation with Scikit-learn_en.srt 8KB 09 - Outlier Handling/001 Outlier Engineering Intro_en.srt 8KB 08 - Discretisation/006 Equal-frequency discretisation Demo_en.srt 8KB 11 - Engineering mixed variables/002 Engineering mixed variables Demo_en.srt 8KB 06 - Categorical Variable Encoding/021 Binary encoding and feature hashing_en.srt 8KB 06 - Categorical Variable Encoding/002 One hot encoding_en.srt 7KB 06 - Categorical Variable Encoding/015 Probability ratio encoding_en.srt 7KB 09 - Outlier Handling/003 Outlier capping with IQR_en.srt 7KB 02 - Variable Types/002 Numerical variables_en.srt 7KB 01 - Introduction/001 Course curriculum overview_en.srt 7KB 04 - Missing Data Imputation/009 Adding a missing indicator_en.srt 7KB 10 - Feature Scaling/012 Scaling to vector unit length_en.srt 7KB 04 - Missing Data Imputation/013 Frequent category imputation with Scikit-learn_en.srt 7KB 10 - Feature Scaling/002 Standardisation_en.srt 7KB 06 - Categorical Variable Encoding/014 Mean encoding Demo_en.srt 7KB 08 - Discretisation/010 Discretisation plus encoding Demo_en.srt 7KB 10 - Feature Scaling/005 Mean normalisation Demo_en.srt 7KB 04 - Missing Data Imputation/011 Mean or median imputation with Scikit-learn_en.srt 7KB 03 - Variable Characteristics/007 Variable distribution_en.srt 6KB 06 - Categorical Variable Encoding/016 Weight of evidence (WoE)_en.srt 6KB 04 - Missing Data Imputation/012 Arbitrary value imputation with Scikit-learn_en.srt 6KB 03 - Variable Characteristics/003 Cardinality - categorical variables_en.srt 6KB 03 - Variable Characteristics/004 Rare labels - categorical variables_en.srt 6KB 10 - Feature Scaling/013 Scaling to vector unit length Demo_en.srt 6KB 04 - Missing Data Imputation/005 End of distribution imputation_en.srt 6KB 04 - Missing Data Imputation/020 End of distribution imputation with Feature-engine_en.srt 6KB 08 - Discretisation/011 Discretisation with classification trees_en.srt 6KB 12 - Engineering datetime variables/003 Engineering time variables and different timezones_en.srt 6KB 10 - Feature Scaling/003 Standardisation Demo_en.srt 6KB 07 - Variable Transformation/001 Variable Transformation Introduction_en.srt 6KB 12 - Engineering datetime variables/001 Engineering datetime variables_en.srt 6KB 04 - Missing Data Imputation/018 Mean or median imputation with Feature-engine_en.srt 5KB 06 - Categorical Variable Encoding/010 Count encoding Demo_en.srt 5KB 04 - Missing Data Imputation/001 Introduction to missing data imputation_en.srt 5KB 06 - Categorical Variable Encoding/019 Rare label encoding_en.srt 5KB 05 - Multivariate Missing Data Imputation/006 MICE and missForest - Demo_en.srt 5KB 09 - Outlier Handling/004 Outlier capping with mean and std_en.srt 5KB 04 - Missing Data Imputation/010 Imputation with Scikit-learn_en.srt 5KB 10 - Feature Scaling/004 Mean normalisation_en.srt 5KB 04 - Missing Data Imputation/007 Missing category imputation_en.srt 5KB 05 - Multivariate Missing Data Imputation/002 KNN imputation_en.srt 5KB 08 - Discretisation/005 Equal-frequency discretisation_en.srt 5KB 04 - Missing Data Imputation/024 Adding a missing indicator with Feature-engine_en.srt 5KB 10 - Feature Scaling/001 Feature scaling Introduction_en.srt 5KB 08 - Discretisation/007 K-means discretisation_en.srt 5KB 04 - Missing Data Imputation/015 Adding a missing indicator with Scikit-learn_en.srt 5KB 02 - Variable Types/003 Categorical variables_en.srt 5KB 10 - Feature Scaling/009 MaxAbsScaling Demo_en.srt 5KB 03 - Variable Characteristics/011 Additional reading resources.html 5KB 08 - Discretisation/002 Equal-width discretisation_en.srt 5KB 08 - Discretisation/013 Discretisation with decision trees using Feature-engine_en.srt 4KB 07 - Variable Transformation/004 Variable transformation with Feature-engine_en.srt 4KB 08 - Discretisation/014 Domain knowledge discretisation_en.srt 4KB 03 - Variable Characteristics/009 Variable magnitude_en.srt 4KB 11 - Engineering mixed variables/001 Engineering mixed variables_en.srt 4KB 09 - Outlier Handling/006 Arbitrary capping_en.srt 4KB 05 - Multivariate Missing Data Imputation/001 Multivariate imputation_en.srt 4KB 10 - Feature Scaling/006 Scaling to minimum and maximum values_en.srt 4KB 06 - Categorical Variable Encoding/009 Count or frequency encoding_en.srt 4KB 09 - Outlier Handling/005 Outlier capping with quantiles_en.srt 4KB 04 - Missing Data Imputation/022 Missing category imputation with Feature-engine_en.srt 4KB 04 - Missing Data Imputation/019 Arbitrary value imputation with Feature-engine_en.srt 4KB 06 - Categorical Variable Encoding/005 One hot encoding of top categories_en.srt 4KB 04 - Missing Data Imputation/014 Missing category imputation with Scikit-learn_en.srt 4KB 03 - Variable Characteristics/001 Variable characteristics_en.srt 4KB 10 - Feature Scaling/007 MinMaxScaling Demo_en.srt 4KB 02 - Variable Types/001 Variables Intro_en.srt 3KB 01 - Introduction/007 Download datasets.html 3KB 01 - Introduction/002 Course requirements_en.srt 3KB 08 - Discretisation/001 Discretisation Introduction_en.srt 3KB 06 - Categorical Variable Encoding/011 Target guided ordinal encoding_en.srt 3KB 10 - Feature Scaling/008 Maximum absolute scaling_en.srt 3KB 10 - Feature Scaling/010 Scaling to median and quantiles_en.srt 3KB 08 - Discretisation/008 K-means discretisation Demo_en.srt 3KB 01 - Introduction/004 Setting up your computer.html 3KB 08 - Discretisation/009 Discretisation plus categorical encoding_en.srt 3KB 06 - Categorical Variable Encoding/013 Mean encoding_en.srt 3KB 04 - Missing Data Imputation/023 Random sample imputation with Feature-engine_en.srt 3KB 02 - Variable Types/005 Mixed variables_en.srt 3KB 04 - Missing Data Imputation/027 Conclusion when to use each missing data imputation method.html 3KB 01 - Introduction/009 Moving forward_en.srt 2KB 02 - Variable Types/004 Date and time variables_en.srt 2KB 10 - Feature Scaling/011 Robust Scaling Demo_en.srt 2KB 06 - Categorical Variable Encoding/023 Additional reading resources.html 2KB 01 - Introduction/005 Course material_en.srt 2KB 06 - Categorical Variable Encoding/007 Ordinal encoding Label encoding_en.srt 2KB 04 - Missing Data Imputation/021 Frequent category imputation with Feature-engine_en.srt 2KB 01 - Introduction/010 FAQ Data science, Python, datasets, presentations and more.html 2KB 01 - Introduction/003 How to approach this course.html 2KB 03 - Variable Characteristics/006 Linear model assumptions - additional reading resources (optional).html 1KB 08 - Discretisation/015 Additional reading resources.html 1KB 10 - Feature Scaling/014 Additional reading resources.html 1KB 05 - Multivariate Missing Data Imputation/005 missForest_en.srt 1KB 05 - Multivariate Missing Data Imputation/007 Additional reading resources (Optional).html 1KB 01 - Introduction/006 Download Jupyter notebooks.html 1019B 06 - Categorical Variable Encoding/003 Important Feature-engine version 1.0.0.html 1009B 14 - Final section Next steps/001 Survey.html 947B 08 - Discretisation/003 Important Feature-engine v 1.0.0.html 739B 14 - Final section Next steps/003 Bonus lecture.html 625B 14 - Final section Next steps/002 Congratulations.html 593B 09 - Outlier Handling/008 Additional reading resources.html 526B 03 - Variable Characteristics/010 Variable characteristics and machine learning models.html 402B 04 - Missing Data Imputation/026 Overview of missing value imputation methods.html 339B 06 - Categorical Variable Encoding/022 Summary table of encoding techniques.html 312B 13 - Assembling a feature engineering pipeline/006 More examples.html 308B 01 - Introduction/008 Download presentations.html 286B 09 - Outlier Handling/007 Important Feature-engine v1.0.0.html 262B 0. Websites you may like/[Tutorialsplanet.NET].url 128B 03 - Variable Characteristics/[Tutorialsplanet.NET].url 128B 05 - Multivariate Missing Data Imputation/[Tutorialsplanet.NET].url 128B 07 - Variable Transformation/[Tutorialsplanet.NET].url 128B 11 - Engineering mixed variables/[Tutorialsplanet.NET].url 128B 13 - Assembling a feature engineering pipeline/[Tutorialsplanet.NET].url 128B [Tutorialsplanet.NET].url 128B