[Coursera] Neural Networks for Machine Learning by Geoffrey Hinton 收录时间:2018-03-27 08:04:11 文件大小:935MB 下载次数:194 最近下载:2021-01-05 14:29:24 磁力链接: magnet:?xt=urn:btih:671da68928377171085caf0a2861d8c559e98f54 立即下载 复制链接 文件列表 05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.mp4 23MB 07_Lecture7/01_Modeling_sequences-_A_brief_overview.mp4 20MB 14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.mp4 20MB 14_Lecture14/05_OPTIONAL_VIDEO-_RBMs_are_infinite_sigmoid_belief_nets_17_mins.mp4 19MB 05_Lecture5/03_Convolutional_nets_for_digit_recognition_16_min.mp4 18MB 12_Lecture12/02_OPTIONAL_VIDEO-_More_efficient_ways_to_get_the_statistics_15_mins.mp4 17MB 02_Lecture2/05_What_perceptrons_cant_do_15_min.mp4 17MB 08_Lecture8/02_Modeling_character_strings_with_multiplicative_connections_14_mins.mp4 17MB 08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.mp4 16MB 16_Lecture16/03_OPTIONAL-_Bayesian_optimization_of_hyper-parameters_13_min.mp4 16MB 13_Lecture13/04_The_wake-sleep_algorithm_13_min.mp4 16MB 10_Lecture10/01_Why_it_helps_to_combine_models_13_min.mp4 15MB 06_Lecture6/05_Rmsprop-_Divide_the_gradient_by_a_running_average_of_its_recent_magnitude.mp4 15MB 01_Lecture1/01_Why_do_we_need_machine_learning_13_min.mp4 15MB 10_Lecture10/02_Mixtures_of_Experts_13_min.mp4 15MB 06_Lecture6/02_A_bag_of_tricks_for_mini-batch_gradient_descent.mp4 15MB 13_Lecture13/02_Belief_Nets_13_min.mp4 15MB 11_Lecture11/01_Hopfield_Nets_13_min.mp4 15MB 04_Lecture4/01_Learning_to_predict_the_next_word_13_min.mp4 14MB 04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.mp4 14MB 12_Lecture12/01_Boltzmann_machine_learning_12_min.mp4 14MB 08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.mp4 14MB 16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.mp4 14MB 13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.mp4 14MB 09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.mp4 14MB 03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.mp4 14MB 03_Lecture3/04_The_backpropagation_algorithm_12_min.mp4 13MB 11_Lecture11/05_How_a_Boltzmann_machine_models_data_12_min.mp4 13MB 11_Lecture11/02_Dealing_with_spurious_minima_11_min.mp4 13MB 12_Lecture12/03_Restricted_Boltzmann_Machines_11_min.mp4 13MB 09_Lecture9/05_The_Bayesian_interpretation_of_weight_decay_11_min.mp4 12MB 09_Lecture9/04_Introduction_to_the_full_Bayesian_approach_12_min.mp4 12MB 13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.mp4 12MB 11_Lecture11/04_Using_stochastic_units_to_improv_search_11_min.mp4 12MB 15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.mp4 12MB 11_Lecture11/03_Hopfield_nets_with_hidden_units_10_min.mp4 11MB 14_Lecture14/02_Discriminative_learning_for_DBNs_9_mins.mp4 11MB 08_Lecture8/04_Echo_State_Networks_9_min.mp4 11MB 14_Lecture14/04_Modeling_real-valued_data_with_an_RBM_10_mins.mp4 11MB 16_Lecture16/02_OPTIONAL-_Hierarchical_Coordinate_Frames_10_mins.mp4 11MB 03_Lecture3/05_Using_the_derivatives_computed_by_backpropagation_10_min.mp4 11MB 15_Lecture15/03_Deep_auto_encoders_for_document_retrieval_8_mins.mp4 10MB 07_Lecture7/05_Long-term_Short-term-memory.mp4 10MB 14_Lecture14/03_What_happens_during_discriminative_fine-tuning_8_mins.mp4 10MB 15_Lecture15/04_Semantic_Hashing_9_mins.mp4 10MB 01_Lecture1/02_What_are_neural_networks_8_min.mp4 10MB 06_Lecture6/03_The_momentum_method.mp4 10MB 10_Lecture10/05_Dropout_9_min.mp4 10MB 15_Lecture15/01_From_PCA_to_autoencoders_5_mins.mp4 10MB 06_Lecture6/01_Overview_of_mini-batch_gradient_descent.mp4 10MB 12_Lecture12/05_RBMs_for_collaborative_filtering_8_mins.mp4 10MB 02_Lecture2/02_Perceptrons-_The_first_generation_of_neural_networks_8_min.mp4 9MB 01_Lecture1/03_Some_simple_models_of_neurons_8_min.mp4 9MB 01_Lecture1/05_Three_types_of_learning_8_min.mp4 9MB 04_Lecture4/04_Neuro-probabilistic_language_models_8_min.mp4 9MB 07_Lecture7/04_Why_it_is_difficult_to_train_an_RNN.mp4 9MB 02_Lecture2/01_Types_of_neural_network_architectures_7_min.mp4 9MB 12_Lecture12/04_An_example_of_RBM_learning_7_mins.mp4 9MB 09_Lecture9/03_Using_noise_as_a_regularizer_7_min.mp4 8MB 10_Lecture10/03_The_idea_of_full_Bayesian_learning_7_min.mp4 8MB 15_Lecture15/06_Shallow_autoencoders_for_pre-training_7_mins.mp4 8MB 10_Lecture10/04_Making_full_Bayesian_learning_practical_7_min.mp4 8MB 04_Lecture4/03_Another_diversion-_The_softmax_output_function_7_min.mp4 8MB 09_Lecture9/02_Limiting_the_size_of_the_weights_6_min.mp4 7MB 07_Lecture7/02_Training_RNNs_with_back_propagation.mp4 7MB 02_Lecture2/03_A_geometrical_view_of_perceptrons_6_min.mp4 7MB 07_Lecture7/03_A_toy_example_of_training_an_RNN.mp4 7MB 05_Lecture5/02_Achieving_viewpoint_invariance_6_min.mp4 7MB 06_Lecture6/04_Adaptive_learning_rates_for_each_connection.mp4 7MB 01_Lecture1/04_A_simple_example_of_learning_6_min.mp4 7MB 02_Lecture2/04_Why_the_learning_works_5_min.mp4 6MB 03_Lecture3/02_The_error_surface_for_a_linear_neuron_5_min.mp4 6MB 05_Lecture5/01_Why_object_recognition_is_difficult_5_min.mp4 5MB 04_Lecture4/02_A_brief_diversion_into_cognitive_science_4_min.mp4 5MB 15_Lecture15/02_Deep_auto_encoders_4_mins.mp4 5MB 09_Lecture9/06_MacKays_quick_and_dirty_method_of_setting_weight_costs_4_min.mp4 4MB 03_Lecture3/03_Learning_the_weights_of_a_logistic_output_neuron_4_min.mp4 4MB 01_Lecture1/01_Why_do_we_need_machine_learning_13_min.pdf 4MB 01_Lecture1/01_Why_do_we_need_machine_learning_13_min.pptx 4MB 03_Lecture3/04_The_backpropagation_algorithm_12_min.pdf 3MB 16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.mp4 3MB 15_Lecture15/01_From_PCA_to_autoencoders_5_mins.pdf 2MB 13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.pdf 2MB 12_Lecture12/01_Boltzmann_machine_learning_12_min.pptx 2MB 15_Lecture15/01_From_PCA_to_autoencoders_5_mins.pptx 2MB 12_Lecture12/01_Boltzmann_machine_learning_12_min.pdf 2MB 05_Lecture5/01_Why_object_recognition_is_difficult_5_min.pptx 2MB 10_Lecture10/05_Dropout_9_min.pdf 2MB 05_Lecture5/01_Why_object_recognition_is_difficult_5_min.pdf 2MB 09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.pptx 1MB 14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.pptx 1MB 03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.pptx 1MB 14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.pdf 1MB 04_Lecture4/01_Learning_to_predict_the_next_word_13_min.pptx 1MB 07_Lecture7/01_Modeling_sequences-_A_brief_overview.pdf 953KB 04_Lecture4/01_Learning_to_predict_the_next_word_13_min.pdf 941KB 05_Lecture5/04_Convolutional_nets_for_object_recognition_17min_0_.pdf 933KB 10_Lecture10/01_Why_it_helps_to_combine_models_13_min.pptx 880KB 10_Lecture10/01_Why_it_helps_to_combine_models_13_min.pdf 827KB 14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min_2_.pdf 769KB 15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.pdf 741KB 11_Lecture11/01_Hopfield_Nets_13_min.pptx 726KB 09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.pdf 702KB 11_Lecture11/01_Hopfield_Nets_13_min.pdf 695KB 06_Lecture6/01_Overview_of_mini-batch_gradient_descent.pptx 657KB 08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.pdf 643KB 15_Lecture15/04_Semantic_Hashing_9_mins.pdf 627KB 08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.pptx 555KB 03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.pdf 535KB 06_Lecture6/01_Overview_of_mini-batch_gradient_descent.pdf 534KB 14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min_1_.pdf 502KB 02_Lecture2/01_Types_of_neural_network_architectures_7_min.pdf 493KB 14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min_0_Self-taught_learning-_transfer_learning_from_unlabeled_data.pdf 474KB 13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.pptx 415KB 02_Lecture2/01_Types_of_neural_network_architectures_7_min.pptx 400KB 16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.pdf 339KB 16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.pdf 339KB 16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.pptx 336KB 16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.pptx 336KB 07_Lecture7/05_Long-term_Short-term-memory.pdf 313KB 13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.pdf 307KB 08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.pdf 267KB 10_Lecture10/02_Mixtures_of_Experts_13_min.pdf 265KB 13_Lecture13/04_The_wake-sleep_algorithm_13_min.pdf 255KB 07_Lecture7/01_Modeling_sequences-_A_brief_overview.pptx 223KB 04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.png 151KB 04_Lecture4/04_Neuro-probabilistic_language_models_8_min.pdf 137KB 05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.pdf 122KB 05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.srt 26KB 14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.srt 23KB 07_Lecture7/01_Modeling_sequences-_A_brief_overview.srt 23KB 14_Lecture14/05_OPTIONAL_VIDEO-_RBMs_are_infinite_sigmoid_belief_nets_17_mins.srt 22KB 05_Lecture5/03_Convolutional_nets_for_digit_recognition_16_min.srt 22KB 06_Lecture6/02_A_bag_of_tricks_for_mini-batch_gradient_descent.srt 19KB 16_Lecture16/03_OPTIONAL-_Bayesian_optimization_of_hyper-parameters_13_min.srt 19KB 02_Lecture2/05_What_perceptrons_cant_do_15_min.srt 19KB 01_Lecture1/01_Why_do_we_need_machine_learning_13_min.srt 18KB 12_Lecture12/02_OPTIONAL_VIDEO-_More_efficient_ways_to_get_the_statistics_15_mins.srt 18KB 04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.srt 18KB 08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.srt 18KB 10_Lecture10/01_Why_it_helps_to_combine_models_13_min.srt 18KB 08_Lecture8/02_Modeling_character_strings_with_multiplicative_connections_14_mins.srt 17KB 13_Lecture13/04_The_wake-sleep_algorithm_13_min.srt 17KB 13_Lecture13/02_Belief_Nets_13_min.srt 17KB 10_Lecture10/02_Mixtures_of_Experts_13_min.srt 17KB 05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.txt 17KB 04_Lecture4/01_Learning_to_predict_the_next_word_13_min.srt 16KB 11_Lecture11/01_Hopfield_Nets_13_min.srt 16KB 12_Lecture12/01_Boltzmann_machine_learning_12_min.srt 16KB 11_Lecture11/05_How_a_Boltzmann_machine_models_data_12_min.srt 16KB 09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.srt 16KB 08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.srt 16KB 06_Lecture6/05_Rmsprop-_Divide_the_gradient_by_a_running_average_of_its_recent_magnitude.srt 16KB 14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.txt 15KB 03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.srt 15KB 03_Lecture3/04_The_backpropagation_algorithm_12_min.srt 15KB 11_Lecture11/02_Dealing_with_spurious_minima_11_min.srt 15KB 07_Lecture7/01_Modeling_sequences-_A_brief_overview.txt 15KB 13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.srt 15KB 14_Lecture14/05_OPTIONAL_VIDEO-_RBMs_are_infinite_sigmoid_belief_nets_17_mins.txt 14KB 11_Lecture11/04_Using_stochastic_units_to_improv_search_11_min.srt 14KB 05_Lecture5/03_Convolutional_nets_for_digit_recognition_16_min.txt 14KB 13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.srt 14KB 12_Lecture12/03_Restricted_Boltzmann_Machines_11_min.srt 14KB 03_Lecture3/05_Using_the_derivatives_computed_by_backpropagation_10_min.srt 14KB 16_Lecture16/02_OPTIONAL-_Hierarchical_Coordinate_Frames_10_mins.srt 13KB 09_Lecture9/04_Introduction_to_the_full_Bayesian_approach_12_min.srt 13KB 09_Lecture9/05_The_Bayesian_interpretation_of_weight_decay_11_min.srt 13KB 15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.srt 13KB 14_Lecture14/02_Discriminative_learning_for_DBNs_9_mins.srt 13KB 16_Lecture16/03_OPTIONAL-_Bayesian_optimization_of_hyper-parameters_13_min.txt 12KB 11_Lecture11/03_Hopfield_nets_with_hidden_units_10_min.srt 12KB 06_Lecture6/02_A_bag_of_tricks_for_mini-batch_gradient_descent.txt 12KB 14_Lecture14/04_Modeling_real-valued_data_with_an_RBM_10_mins.srt 12KB 02_Lecture2/05_What_perceptrons_cant_do_15_min.txt 12KB 08_Lecture8/04_Echo_State_Networks_9_min.srt 12KB 06_Lecture6/01_Overview_of_mini-batch_gradient_descent.srt 12KB 12_Lecture12/02_OPTIONAL_VIDEO-_More_efficient_ways_to_get_the_statistics_15_mins.txt 12KB 01_Lecture1/01_Why_do_we_need_machine_learning_13_min.txt 12KB 04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.txt 12KB 10_Lecture10/05_Dropout_9_min.srt 12KB 08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.txt 12KB 07_Lecture7/05_Long-term_Short-term-memory.srt 12KB 08_Lecture8/02_Modeling_character_strings_with_multiplicative_connections_14_mins.txt 12KB 01_Lecture1/02_What_are_neural_networks_8_min.srt 12KB 10_Lecture10/01_Why_it_helps_to_combine_models_13_min.txt 11KB 15_Lecture15/04_Semantic_Hashing_9_mins.srt 11KB 13_Lecture13/02_Belief_Nets_13_min.txt 11KB 13_Lecture13/04_The_wake-sleep_algorithm_13_min.txt 11KB 10_Lecture10/02_Mixtures_of_Experts_13_min.txt 11KB 06_Lecture6/03_The_momentum_method.srt 11KB 02_Lecture2/02_Perceptrons-_The_first_generation_of_neural_networks_8_min.srt 11KB 04_Lecture4/01_Learning_to_predict_the_next_word_13_min.txt 11KB 04_Lecture4/04_Neuro-probabilistic_language_models_8_min.srt 11KB 01_Lecture1/03_Some_simple_models_of_neurons_8_min.srt 11KB 12_Lecture12/05_RBMs_for_collaborative_filtering_8_mins.srt 11KB 14_Lecture14/03_What_happens_during_discriminative_fine-tuning_8_mins.srt 11KB 11_Lecture11/01_Hopfield_Nets_13_min.txt 11KB 15_Lecture15/03_Deep_auto_encoders_for_document_retrieval_8_mins.srt 11KB 12_Lecture12/01_Boltzmann_machine_learning_12_min.txt 10KB 01_Lecture1/05_Three_types_of_learning_8_min.srt 10KB 09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.txt 10KB 16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.srt 10KB 11_Lecture11/05_How_a_Boltzmann_machine_models_data_12_min.txt 10KB 10_Lecture10/03_The_idea_of_full_Bayesian_learning_7_min.srt 10KB 15_Lecture15/01_From_PCA_to_autoencoders_5_mins.srt 10KB 06_Lecture6/05_Rmsprop-_Divide_the_gradient_by_a_running_average_of_its_recent_magnitude.txt 10KB 08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.txt 10KB 15_Lecture15/06_Shallow_autoencoders_for_pre-training_7_mins.srt 10KB 03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.txt 10KB 12_Lecture12/04_An_example_of_RBM_learning_7_mins.srt 10KB 02_Lecture2/01_Types_of_neural_network_architectures_7_min.srt 10KB 07_Lecture7/04_Why_it_is_difficult_to_train_an_RNN.srt 10KB 11_Lecture11/02_Dealing_with_spurious_minima_11_min.txt 10KB 03_Lecture3/04_The_backpropagation_algorithm_12_min.txt 10KB 13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.txt 10KB 11_Lecture11/04_Using_stochastic_units_to_improv_search_11_min.txt 9KB 04_Lecture4/03_Another_diversion-_The_softmax_output_function_7_min.srt 9KB 16_Lecture16/02_OPTIONAL-_Hierarchical_Coordinate_Frames_10_mins.txt 9KB 03_Lecture3/05_Using_the_derivatives_computed_by_backpropagation_10_min.txt 9KB 12_Lecture12/03_Restricted_Boltzmann_Machines_11_min.txt 9KB 09_Lecture9/03_Using_noise_as_a_regularizer_7_min.srt 9KB 13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.txt 9KB 15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.txt 9KB 09_Lecture9/05_The_Bayesian_interpretation_of_weight_decay_11_min.txt 9KB 09_Lecture9/04_Introduction_to_the_full_Bayesian_approach_12_min.txt 9KB 14_Lecture14/02_Discriminative_learning_for_DBNs_9_mins.txt 8KB 10_Lecture10/04_Making_full_Bayesian_learning_practical_7_min.srt 8KB 09_Lecture9/02_Limiting_the_size_of_the_weights_6_min.srt 8KB 07_Lecture7/02_Training_RNNs_with_back_propagation.srt 8KB 02_Lecture2/03_A_geometrical_view_of_perceptrons_6_min.srt 8KB 14_Lecture14/04_Modeling_real-valued_data_with_an_RBM_10_mins.txt 8KB 05_Lecture5/02_Achieving_viewpoint_invariance_6_min.srt 8KB 11_Lecture11/03_Hopfield_nets_with_hidden_units_10_min.txt 8KB 08_Lecture8/04_Echo_State_Networks_9_min.txt 8KB 06_Lecture6/01_Overview_of_mini-batch_gradient_descent.txt 8KB 06_Lecture6/04_Adaptive_learning_rates_for_each_connection.srt 8KB 07_Lecture7/05_Long-term_Short-term-memory.txt 8KB 15_Lecture15/04_Semantic_Hashing_9_mins.txt 8KB 10_Lecture10/05_Dropout_9_min.txt 8KB 07_Lecture7/03_A_toy_example_of_training_an_RNN.srt 8KB 01_Lecture1/02_What_are_neural_networks_8_min.txt 7KB 06_Lecture6/03_The_momentum_method.txt 7KB 14_Lecture14/03_What_happens_during_discriminative_fine-tuning_8_mins.txt 7KB 02_Lecture2/02_Perceptrons-_The_first_generation_of_neural_networks_8_min.txt 7KB 15_Lecture15/03_Deep_auto_encoders_for_document_retrieval_8_mins.txt 7KB 01_Lecture1/04_A_simple_example_of_learning_6_min.srt 7KB 12_Lecture12/05_RBMs_for_collaborative_filtering_8_mins.txt 7KB 04_Lecture4/04_Neuro-probabilistic_language_models_8_min.txt 7KB 16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.txt 7KB 01_Lecture1/03_Some_simple_models_of_neurons_8_min.txt 7KB 15_Lecture15/01_From_PCA_to_autoencoders_5_mins.txt 7KB 01_Lecture1/05_Three_types_of_learning_8_min.txt 7KB 15_Lecture15/06_Shallow_autoencoders_for_pre-training_7_mins.txt 7KB 10_Lecture10/03_The_idea_of_full_Bayesian_learning_7_min.txt 7KB 12_Lecture12/04_An_example_of_RBM_learning_7_mins.txt 6KB 02_Lecture2/01_Types_of_neural_network_architectures_7_min.txt 6KB 07_Lecture7/04_Why_it_is_difficult_to_train_an_RNN.txt 6KB 02_Lecture2/04_Why_the_learning_works_5_min.srt 6KB 03_Lecture3/02_The_error_surface_for_a_linear_neuron_5_min.srt 6KB 05_Lecture5/01_Why_object_recognition_is_difficult_5_min.srt 6KB 04_Lecture4/03_Another_diversion-_The_softmax_output_function_7_min.txt 6KB 09_Lecture9/03_Using_noise_as_a_regularizer_7_min.txt 6KB 04_Lecture4/02_A_brief_diversion_into_cognitive_science_4_min.srt 6KB 10_Lecture10/04_Making_full_Bayesian_learning_practical_7_min.txt 6KB 07_Lecture7/02_Training_RNNs_with_back_propagation.txt 6KB 09_Lecture9/02_Limiting_the_size_of_the_weights_6_min.txt 5KB 02_Lecture2/03_A_geometrical_view_of_perceptrons_6_min.txt 5KB 15_Lecture15/02_Deep_auto_encoders_4_mins.srt 5KB 05_Lecture5/02_Achieving_viewpoint_invariance_6_min.txt 5KB 06_Lecture6/04_Adaptive_learning_rates_for_each_connection.txt 5KB 07_Lecture7/03_A_toy_example_of_training_an_RNN.txt 5KB 01_Lecture1/04_A_simple_example_of_learning_6_min.txt 5KB 03_Lecture3/03_Learning_the_weights_of_a_logistic_output_neuron_4_min.srt 4KB 09_Lecture9/06_MacKays_quick_and_dirty_method_of_setting_weight_costs_4_min.srt 4KB 02_Lecture2/04_Why_the_learning_works_5_min.txt 4KB 03_Lecture3/02_The_error_surface_for_a_linear_neuron_5_min.txt 4KB 05_Lecture5/01_Why_object_recognition_is_difficult_5_min.txt 4KB 04_Lecture4/02_A_brief_diversion_into_cognitive_science_4_min.txt 4KB 15_Lecture15/02_Deep_auto_encoders_4_mins.txt 4KB 16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.srt 3KB 03_Lecture3/03_Learning_the_weights_of_a_logistic_output_neuron_4_min.txt 3KB 09_Lecture9/06_MacKays_quick_and_dirty_method_of_setting_weight_costs_4_min.txt 3KB 16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.txt 2KB