[] Udemy - The Complete Machine Learning Course with Python 收录时间:2020-10-31 12:15:57 文件大小:7GB 下载次数:6 最近下载:2021-01-17 17:24:18 磁力链接: magnet:?xt=urn:btih:68bcd600e7f70aa9b9cf3864c220fc1aae08541a 立即下载 复制链接 文件列表 6. Tree/6. Project HR.mp4 178MB 7. Ensemble Machine Learning/2. Bagging.mp4 165MB 12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.mp4 156MB 3. Regression/2. EDA.mp4 152MB 11. Deep Learning/3. Motivational Example - Project MNIST.mp4 145MB 11. Deep Learning/1. Estimating Simple Function with Neural Networks.mp4 144MB 13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.mp4 142MB 3. Regression/15. Data Preprocessing.mp4 136MB 13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.mp4 129MB 3. Regression/19. CV Illustration.mp4 127MB 10. Unsupervised Learning Clustering/1. Clustering.mp4 126MB 3. Regression/9. Multiple Regression 1.mp4 126MB 13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.mp4 125MB 4. Classification/1. Logistic Regression.mp4 120MB 3. Regression/7. Robust Regression.mp4 119MB 13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.mp4 111MB 3. Regression/12. Polynomial Regression.mp4 111MB 4. Classification/3. Understanding MNIST.mp4 109MB 3. Regression/4. Correlation Analysis and Feature Selection.mp4 105MB 4. Classification/10. Precision Recall Tradeoff.mp4 102MB 3. Regression/8. Evaluate Regression Model Performance.mp4 100MB 13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.mp4 97MB 2. Getting Started with Anaconda/6. Iris Project 4 Visualization.mp4 93MB 3. Regression/10. Multiple Regression 2.mp4 91MB 2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.mp4 90MB 12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.mp4 89MB 13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.mp4 88MB 13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.mp4 84MB 5. Support Vector Machine (SVM)/2. Linear SVM Classification.mp4 81MB 7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.mp4 80MB 13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.mp4 80MB 3. Regression/6. Five Steps Machine Learning Process.mp4 77MB 12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.mp4 77MB 3. Regression/5. Linear Regression with Scikit-Learn.mp4 77MB 11. Deep Learning/5. Natural Language Processing - Binary Classification.mp4 76MB 8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.mp4 76MB 11. Deep Learning/4. Binary Classification Problem.mp4 72MB 5. Support Vector Machine (SVM)/4. Radial Basis Function.mp4 70MB 12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.mp4 70MB 3. Regression/16. Variance-Bias Trade Off.mp4 69MB 6. Tree/7. Project HR with Google Colab.mp4 67MB 13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.mp4 66MB 2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.mp4 65MB 13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.mp4 64MB 8. k-Nearest Neighbours (kNN)/1. kNN Introduction.mp4 63MB 3. Regression/13. Dealing with Non-linear Relationships.mp4 63MB 5. Support Vector Machine (SVM)/5. Support Vector Regression.mp4 60MB 7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.mp4 59MB 10. Unsupervised Learning Clustering/2. k_Means Clustering.mp4 58MB 4. Classification/4. SGD.mp4 57MB 3. Regression/17. Learning Curve.mp4 56MB 2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.mp4 56MB 12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.mp4 55MB 6. Tree/3. Visualizing Boundary.mp4 55MB 4. Classification/6. Confusion Matrix.mp4 55MB 1. Introduction/1. What Does the Course Cover.mp4 54MB 4. Classification/12. ROC.mp4 52MB 4. Classification/5. Performance Measure and Stratified k-Fold.mp4 52MB 6. Tree/2. Training and Visualizing a Decision Tree.mp4 51MB 2. Getting Started with Anaconda/2. Hello World.mp4 51MB 7. Ensemble Machine Learning/4. AdaBoost.mp4 50MB 8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.mp4 49MB 9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.mp4 49MB 3. Regression/1. Scikit-Learn.mp4 48MB 3. Regression/18. Cross Validation.mp4 48MB 9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.mp4 48MB 7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.mp4 46MB 3. Regression/11. Regularized Regression.mp4 44MB 6. Tree/1. Introduction to Decision Tree.mp4 44MB 13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.mp4 44MB 4. Classification/2. Introduction to Classification.mp4 42MB 12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.mp4 41MB 6. Tree/4. Tree Regression, Regularization and Over Fitting.mp4 40MB 2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.mp4 38MB 5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.mp4 38MB 7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.mp4 38MB 12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.mp4 37MB 7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.mp4 37MB 9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.mp4 37MB 3. Regression/14. Feature Importance.mp4 36MB 6. Tree/5. End to End Modeling.mp4 36MB 13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.mp4 35MB 7. Ensemble Machine Learning/7. XGBoost.mp4 35MB 5. Support Vector Machine (SVM)/3. Polynomial Kernel.mp4 35MB 9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.mp4 34MB 13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.mp4 32MB 9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.mp4 31MB 9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.mp4 31MB 13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.mp4 30MB 13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.mp4 29MB 13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.mp4 28MB 12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.mp4 27MB 4. Classification/7. Precision.mp4 24MB 3. Regression/3. Correlation Analysis and Feature Selection.mp4 23MB 11. Deep Learning/2. Neural Network Architecture.mp4 22MB 7. Ensemble Machine Learning/6. XGBoost Installation.mp4 22MB 7. Ensemble Machine Learning/5. Gradient Boosting Machine.mp4 22MB 9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.mp4 21MB 4. Classification/11. Altering the Precision Recall Tradeoff.mp4 21MB 12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.mp4 21MB 4. Classification/8. Recall.mp4 20MB 12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.mp4 19MB 12. Appendix A1 Foundations of Deep Learning/8. Tensors.mp4 17MB 12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.mp4 14MB 12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.mp4 14MB 4. Classification/9. f1.mp4 12MB 13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.mp4 11MB 12. Appendix A1 Foundations of Deep Learning/6. Why Now.mp4 9MB 3. Regression/3.1 0305.zip 2MB 8. k-Nearest Neighbours (kNN)/4.1 0805.zip 41KB 6. Tree/6. Project HR.srt 31KB 3. Regression/15. Data Preprocessing.srt 28KB 11. Deep Learning/1. Estimating Simple Function with Neural Networks.srt 26KB 12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.srt 26KB 11. Deep Learning/3. Motivational Example - Project MNIST.srt 26KB 4. Classification/1. Logistic Regression.srt 25KB 8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.srt 25KB 3. Regression/2. EDA.srt 24KB 3. Regression/9. Multiple Regression 1.srt 24KB 13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.srt 24KB 7. Ensemble Machine Learning/2. Bagging.srt 23KB 4. Classification/10. Precision Recall Tradeoff.srt 22KB 3. Regression/12. Polynomial Regression.srt 22KB 3. Regression/7. Robust Regression.srt 22KB 3. Regression/19. CV Illustration.srt 21KB 12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.srt 21KB 13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.srt 21KB 10. Unsupervised Learning Clustering/1. Clustering.srt 21KB 3. Regression/8. Evaluate Regression Model Performance.srt 19KB 4. Classification/3. Understanding MNIST.srt 18KB 12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.srt 18KB 13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.srt 17KB 13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.srt 17KB 2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.srt 16KB 3. Regression/5. Linear Regression with Scikit-Learn.srt 16KB 3. Regression/10. Multiple Regression 2.srt 15KB 3. Regression/4. Correlation Analysis and Feature Selection.srt 15KB 3. Regression/16. Variance-Bias Trade Off.srt 15KB 2. Getting Started with Anaconda/2. Hello World.srt 14KB 13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.srt 14KB 13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.srt 14KB 12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.srt 14KB 5. Support Vector Machine (SVM)/2. Linear SVM Classification.srt 13KB 13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.srt 13KB 11. Deep Learning/5. Natural Language Processing - Binary Classification.srt 13KB 12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.srt 13KB 6. Tree/7. Project HR with Google Colab.srt 13KB 12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.srt 13KB 2. Getting Started with Anaconda/6. Iris Project 4 Visualization.srt 12KB 11. Deep Learning/4. Binary Classification Problem.srt 12KB 12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.srt 12KB 8. k-Nearest Neighbours (kNN)/1. kNN Introduction.srt 12KB 4. Classification/6. Confusion Matrix.srt 12KB 13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.srt 12KB 7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.srt 12KB 4. Classification/4. SGD.srt 11KB 3. Regression/13. Dealing with Non-linear Relationships.srt 11KB 3. Regression/1. Scikit-Learn.srt 11KB 3. Regression/17. Learning Curve.srt 11KB 10. Unsupervised Learning Clustering/2. k_Means Clustering.srt 11KB 2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.srt 11KB 2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.srt 11KB 3. Regression/3. Correlation Analysis and Feature Selection.srt 11KB 8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.srt 11KB 7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.srt 10KB 3. Regression/18. Cross Validation.srt 10KB 3. Regression/6. Five Steps Machine Learning Process.srt 10KB 13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.srt 10KB 5. Support Vector Machine (SVM)/5. Support Vector Regression.srt 10KB 6. Tree/3. Visualizing Boundary.srt 10KB 13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.srt 9KB 5. Support Vector Machine (SVM)/4. Radial Basis Function.srt 9KB 9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.srt 9KB 4. Classification/5. Performance Measure and Stratified k-Fold.srt 9KB 6. Tree/1. Introduction to Decision Tree.srt 9KB 5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.srt 9KB 3. Regression/11. Regularized Regression.srt 8KB 4. Classification/12. ROC.srt 8KB 7. Ensemble Machine Learning/4. AdaBoost.srt 8KB 11. Deep Learning/2. Neural Network Architecture.srt 8KB 13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.srt 8KB 7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.srt 8KB 9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.srt 8KB 6. Tree/2. Training and Visualizing a Decision Tree.srt 7KB 13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.srt 7KB 13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.srt 7KB 13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.srt 7KB 2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.srt 7KB 9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.srt 7KB 9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.srt 6KB 7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.srt 6KB 4. Classification/2. Introduction to Classification.srt 6KB 5. Support Vector Machine (SVM)/3. Polynomial Kernel.srt 6KB 7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.srt 6KB 12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.srt 6KB 12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.srt 6KB 3. Regression/14. Feature Importance.srt 6KB 9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.srt 6KB 12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.srt 6KB 6. Tree/4. Tree Regression, Regularization and Over Fitting.srt 6KB 6. Tree/5. End to End Modeling.srt 6KB 7. Ensemble Machine Learning/7. XGBoost.srt 5KB 12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.srt 5KB 9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.srt 5KB 12. Appendix A1 Foundations of Deep Learning/8. Tensors.srt 5KB 13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.srt 5KB 4. Classification/7. Precision.srt 4KB 4. Classification/8. Recall.srt 4KB 9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.srt 4KB 4. Classification/11. Altering the Precision Recall Tradeoff.srt 4KB 7. Ensemble Machine Learning/5. Gradient Boosting Machine.srt 4KB 13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.srt 4KB 12. Appendix A1 Foundations of Deep Learning/6. Why Now.srt 3KB 1. Introduction/1. What Does the Course Cover.srt 3KB 7. Ensemble Machine Learning/6. XGBoost Installation.srt 3KB 12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.srt 3KB 4. Classification/9. f1.srt 2KB 1. Introduction/2. How to Succeed in This Course.html 2KB 1. Introduction/3. Project Files and Resources.html 2KB 13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.srt 2KB 8. k-Nearest Neighbours (kNN)/3. Addition Materials.html 335B [FreeCourseWorld.Com].url 54B