[UdemyCourseDownloader] Apache Spark for Java Developers 收录时间:2020-01-02 03:12:09 文件大小:11GB 下载次数:11 最近下载:2020-09-28 04:32:03 磁力链接: magnet:?xt=urn:btih:6a0bf2ef0dc04c9299d85ebcd878a3820dbcf093 立即下载 复制链接 文件列表 43. Recommender Systems/2. Building the Model.mp4 258MB 41. Decision Trees/2. Building the Model.mp4 253MB 40. Logistic Regression/3. Coding a Logistic Regression.mp4 230MB 38. Pipelines/1. Pipelines.mp4 223MB 16. SparkSQL Getting Started/1. SparkSQL Getting Started.mp4 199MB 26. More Aggregations/1. How to use the agg method in Spark.mp4 196MB 45. Streaming Chapter 2 - Streaming with Apache Kafka/5. Using KafkaUtils to access a DStream.mp4 188MB 14. RDD Performance/7. Caching and Persistence.mp4 187MB 02. Getting Started/2. Installing Spark.mp4 168MB 29. SparkSQL Performance/1. Understand the SparkUI for SparkSQL.mp4 168MB 09. Keyword Ranking Practical/3. Worked Solution (continued) with Sorting.mp4 156MB 46. Streaming Chapter 3- Structured Streaming/1. Structured Streaming Overview.mp4 153MB 45. Streaming Chapter 2 - Streaming with Apache Kafka/3. Using a Kafka Event Simulator.mp4 153MB 39. Case Study/2. Case Study - Walkthrough Part 1.mp4 152MB 24. DataFrames API/1. SQL vs DataFrames.mp4 147MB 23. Ordering/1. Ordering.mp4 146MB 39. Case Study/3. Case Study - Walkthrough Part 2.mp4 140MB 19. In Memory Data/1. In Memory Data.mp4 140MB 17. Datasets/4. Filters using Columns.mp4 139MB 22. Multiple Groupings/1. Multiple Groupings.mp4 139MB 08. Reading from Disk/1. Reading from Disk.mp4 138MB 24. DataFrames API/2. DataFrame Grouping.mp4 137MB 09. Keyword Ranking Practical/2. Worked Solution.mp4 136MB 14. RDD Performance/4. Shuffles.mp4 134MB 46. Streaming Chapter 3- Structured Streaming/2. Data Sinks.mp4 132MB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/4. Starting a Streaming Job.mp4 128MB 46. Streaming Chapter 3- Structured Streaming/5. What is the Batch Size in Structured Streaming.mp4 126MB 37. Non-Numeric Data/2. Understanding Vectors.mp4 125MB 46. Streaming Chapter 3- Structured Streaming/4. Windows and Watermarks.mp4 123MB 18. The Full SQL Syntax/1. Using a Spark Temporary View for SQL.mp4 121MB 45. Streaming Chapter 2 - Streaming with Apache Kafka/8. Adding a Slide Interval.mp4 121MB 36. Feature Selection/3. Identifying and Eliminating Duplicated Features.mp4 119MB 37. Non-Numeric Data/1. Using OneHotEncoding.mp4 116MB 35. Model Fitting Parameters/1. Setting Linear Regression Parameters.mp4 113MB 30. HashAggregation/3. How can I force Spark to use HashAggregation.mp4 111MB 10. Sorts and Coalesce/2. Why Coalesce is the Wrong Solution.mp4 110MB 30. HashAggregation/2. How does HashAggregation work.mp4 109MB 09. Keyword Ranking Practical/1. Practical Requirements.mp4 106MB 14. RDD Performance/1. Transformations and Actions.mp4 106MB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/5. Streaming Transformations.mp4 98MB 20. Groupings and Aggregations/1. Groupings and Aggregations.mp4 97MB 11. Deploying to AWS EMR (Optional)/2. Packing a Spark Jar for EMR.mp4 95MB 28. User Defined Functions/3. Using a UDF in Spark SQL.mp4 94MB 30. HashAggregation/1. Explaining Execution Plans.mp4 94MB 45. Streaming Chapter 2 - Streaming with Apache Kafka/6. Writing a Kafka Aggegration.mp4 94MB 36. Feature Selection/1. Describing the Features.mp4 94MB 41. Decision Trees/1. Overview of Decision Trees.mp4 91MB 29. SparkSQL Performance/3. Update - Setting spark.sql.shuffle.partitions.mp4 90MB 28. User Defined Functions/1. How to use a Lambda to write a UDF in Spark.mp4 88MB 03. Reduces on RDDs/1. Reduces on RDDs.mp4 88MB 10. Sorts and Coalesce/1. Why do sorts not work with foreach in Spark.mp4 88MB 12. Joins/2. Left Outer Joins and Optionals.mp4 88MB 01. Introduction/4. Spark Architecture and RDDs.mp4 86MB 11. Deploying to AWS EMR (Optional)/1. How to start an EMR Spark Cluster.mp4 85MB 33. Linear Regression Models/3. Assembling a Vector of Features.mp4 82MB 45. Streaming Chapter 2 - Streaming with Apache Kafka/2. Installing Kafka.mp4 81MB 27. Practical Exercise/1. Building a Pivot Table with Multiple Aggregations.mp4 81MB 01. Introduction/3.1 Practicals.zip.zip 79MB 06. PairRDDs/3. Coding a ReduceByKey.mp4 79MB 06. PairRDDs/2. Building a PairRDD.mp4 78MB 31. SparkSQL Performance vs RDDs/1. SparkSQL Performance vs RDDs.mp4 75MB 17. Datasets/1. Dataset Basics.mp4 72MB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/8. Windowing Batches.mp4 72MB 05. Tuples/2. Tuples and RDDs.mp4 72MB 07. FlatMaps and Filters/1. FlatMaps.mp4 69MB 17. Datasets/2. Filters using Expressions.mp4 69MB 13. Big Data Big Exercise/2. Warmup.mp4 68MB 34. Training Data/5. Assessing Model Accuracy with R2 and RMSE.mp4 67MB 32. Module 3 - SparkML for Machine Learning/5. The Model Building Process.mp4 65MB 14. RDD Performance/3. Narrow vs Wide Transformations.mp4 65MB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/6. Streaming Aggregations.vtt 65MB 41. Decision Trees/4. Random Forests.mp4 64MB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/6. Streaming Aggregations.mp4 64MB 33. Linear Regression Models/4. Model Fitting.mp4 63MB 06. PairRDDs/4. Using the Fluent API.mp4 63MB 36. Feature Selection/2. Correlation of Fetures.mp4 62MB 29. SparkSQL Performance/2. How does SQL and DataFrame performance compare.mp4 61MB 11. Deploying to AWS EMR (Optional)/3. Running a Spark Job on EMR.mp4 61MB 21. Date Formatting/1. Date Formatting.mp4 61MB 13. Big Data Big Exercise/11. Walkthrough - Step 9, adding titles and using the Big Data file.mp4 59MB 05. Tuples/1. RDDs of Objects.mp4 59MB 01. Introduction/3. Module 1 - Introduction.mp4 58MB 45. Streaming Chapter 2 - Streaming with Apache Kafka/4. Integrating Kafka with Spark.mp4 57MB 06. PairRDDs/1. Overview of PairRDDs.mp4 57MB 33. Linear Regression Models/2. Beginning Coding Linear Regressions.mp4 56MB 39. Case Study/1. Requirements.mp4 56MB 06. PairRDDs/5. Grouping By Key.mp4 53MB 12. Joins/1. Inner Joins.mp4 52MB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/2. Streaming Chapter 1 - Introduction to Streaming.mp4 52MB 01. Introduction/1. Welcome.mp4 51MB 41. Decision Trees/3. Interpreting a Decision Tree.mp4 51MB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/3. DStreams.mp4 50MB 34. Training Data/2. Using data from Kaggle.mp4 49MB 04. Mapping and Outputting/4. If you've had a NotSerializableException in Spark.mp4 49MB 04. Mapping and Outputting/3. Counting Big Data Items.mp4 47MB 45. Streaming Chapter 2 - Streaming with Apache Kafka/1. Overview of Kafka.mp4 47MB 34. Training Data/3. Practical Walkthrough.mp4 47MB 13. Big Data Big Exercise/5. Walkthrough - Step 3.mp4 47MB 34. Training Data/4. Splitting Training Data with Random Splits.mp4 46MB 04. Mapping and Outputting/1. Mapping Operations.mp4 45MB 28. User Defined Functions/2. Using more than one input parameter in Spark UDF.mp4 45MB 14. RDD Performance/2. The DAG and SparkUI.mp4 43MB 14. RDD Performance/5. Dealing with Key Skews.mp4 43MB 07. FlatMaps and Filters/2. Filters.mp4 42MB 04. Mapping and Outputting/2. Outputting Results to the Console.mp4 42MB 32. Module 3 - SparkML for Machine Learning/4. Supervised vs Unsupervised Learning.mp4 40MB 25. Pivot Tables/1. How does a Pivot Table work.mp4 39MB 11. Deploying to AWS EMR (Optional)/5. Calculating EMR costs and Terminating the cluster.mp4 38MB 17. Datasets/3. Filters using Lambdas.mp4 37MB 11. Deploying to AWS EMR (Optional)/4. Understanding the Job Progress Output.mp4 35MB 43. Recommender Systems/1. Overview and Matrix Factorisation.mp4 35MB 13. Big Data Big Exercise/3. Main Exercise Requirments.mp4 35MB 46. Streaming Chapter 3- Structured Streaming/6. Kafka Structured Streaming Pipelines.mp4 35MB 14. RDD Performance/6. Avoiding groupByKey and using map-side-reduces instead.mp4 34MB 13. Big Data Big Exercise/4. Walkthrough - Step 2.mp4 34MB 10. Sorts and Coalesce/3. What is Coalesce used for in Spark.mp4 34MB 15. Module 2 - Chapter 1 SparkSQL Introduction/2. Introducing SparkSQL.mp4 34MB 40. Logistic Regression/2. TrueFalse Negatives and Postives.mp4 33MB 12. Joins/2. Left Outer Joins and Optionals.vtt 30MB 12. Joins/3. Right Outer Joins.mp4 30MB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/7. SparkUI for Streaming Jobs.mp4 27MB 33. Linear Regression Models/1. Introducing Linear Regression.mp4 27MB 32. Module 3 - SparkML for Machine Learning/2. What is Machine Learning.mp4 27MB 15. Module 2 - Chapter 1 SparkSQL Introduction/1.1 biglog.txt.txt 24MB 13. Big Data Big Exercise/8. Walkthrough - Step 6.mp4 23MB 34. Training Data/1. Training vs Test and Holdout Data.mp4 23MB 32. Module 3 - SparkML for Machine Learning/3. Coming up in this Module - and introducing Kaggle.mp4 23MB 15. Module 2 - Chapter 1 SparkSQL Introduction/1.2 Code.zip.zip 22MB 12. Joins/4. Full Joins and Cartesians.mp4 21MB 13. Big Data Big Exercise/9. Walkthrough - Step 7.mp4 21MB 13. Big Data Big Exercise/10. Walkthrough - Step 8.mp4 20MB 45. Streaming Chapter 2 - Streaming with Apache Kafka/7. Adding a Window.mp4 20MB 13. Big Data Big Exercise/7. Walkthrough - Step 5.mp4 19MB 13. Big Data Big Exercise/1. Introducing the Requirements.mp4 17MB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/1.1 Code.zip.zip 15MB 13. Big Data Big Exercise/6. Walkthrough - Step 4.mp4 14MB 30. HashAggregation/4. SQL vs DataFrames Performance Results.mp4 12MB 36. Feature Selection/4. Data Preparation.mp4 10MB 32. Module 3 - SparkML for Machine Learning/1.1 MLCode.zip.zip 6MB 45. Streaming Chapter 2 - Streaming with Apache Kafka/3.1 viewing-figures-generation.zip.zip 4MB 40. Logistic Regression/1.1 MLCodeChapters9-12.zip.zip 3MB 13. Big Data Big Exercise/1.1 Practical Guide.pdf.pdf 651KB 43. Recommender Systems/2. Building the Model.vtt 29KB 41. Decision Trees/2. Building the Model.vtt 25KB 42. K Means Clustering/1. K Means Clustering.vtt 24KB 14. RDD Performance/7. Caching and Persistence.vtt 24KB 02. Getting Started/2. Installing Spark.vtt 23KB 38. Pipelines/1. Pipelines.vtt 23KB 40. Logistic Regression/3. Coding a Logistic Regression.vtt 22KB 16. SparkSQL Getting Started/1. SparkSQL Getting Started.vtt 22KB 26. More Aggregations/1. How to use the agg method in Spark.vtt 20KB 29. SparkSQL Performance/1. Understand the SparkUI for SparkSQL.vtt 20KB 45. Streaming Chapter 2 - Streaming with Apache Kafka/5. Using KafkaUtils to access a DStream.vtt 19KB 14. RDD Performance/4. Shuffles.vtt 19KB 45. Streaming Chapter 2 - Streaming with Apache Kafka/3. Using a Kafka Event Simulator.vtt 18KB 23. Ordering/1. Ordering.vtt 18KB 09. Keyword Ranking Practical/2. Worked Solution.vtt 17KB 36. Feature Selection/1. Describing the Features.vtt 17KB 30. HashAggregation/2. How does HashAggregation work.vtt 16KB 25. Pivot Tables/2. Coding a Pivot Table in Spark.vtt 16KB 37. Non-Numeric Data/1. Using OneHotEncoding.vtt 16KB 19. In Memory Data/1. In Memory Data.vtt 16KB 41. Decision Trees/1. Overview of Decision Trees.vtt 16KB 24. DataFrames API/1. SQL vs DataFrames.vtt 16KB 35. Model Fitting Parameters/2. Training, Test and Holdout Data.vtt 16KB 09. Keyword Ranking Practical/3. Worked Solution (continued) with Sorting.vtt 15KB 22. Multiple Groupings/1. Multiple Groupings.vtt 15KB 03. Reduces on RDDs/1. Reduces on RDDs.vtt 15KB 10. Sorts and Coalesce/2. Why Coalesce is the Wrong Solution.vtt 15KB 46. Streaming Chapter 3- Structured Streaming/1. Structured Streaming Overview.vtt 15KB 30. HashAggregation/3. How can I force Spark to use HashAggregation.vtt 14KB 18. The Full SQL Syntax/1. Using a Spark Temporary View for SQL.vtt 14KB 24. DataFrames API/2. DataFrame Grouping.vtt 14KB 20. Groupings and Aggregations/1. Groupings and Aggregations.vtt 14KB 35. Model Fitting Parameters/1. Setting Linear Regression Parameters.vtt 14KB 36. Feature Selection/3. Identifying and Eliminating Duplicated Features.vtt 14KB 39. Case Study/1. Requirements.vtt 14KB 08. Reading from Disk/1. Reading from Disk.vtt 14KB 39. Case Study/2. Case Study - Walkthrough Part 1.vtt 14KB 46. Streaming Chapter 3- Structured Streaming/2. Data Sinks.vtt 14KB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/4. Starting a Streaming Job.vtt 13KB 37. Non-Numeric Data/2. Understanding Vectors.vtt 13KB 46. Streaming Chapter 3- Structured Streaming/3. Structured Streaming Output Modes.vtt 13KB 46. Streaming Chapter 3- Structured Streaming/5. What is the Batch Size in Structured Streaming.vtt 13KB 39. Case Study/3. Case Study - Walkthrough Part 2.vtt 13KB 06. PairRDDs/3. Coding a ReduceByKey.vtt 13KB 09. Keyword Ranking Practical/1. Practical Requirements.vtt 13KB 45. Streaming Chapter 2 - Streaming with Apache Kafka/1. Overview of Kafka.vtt 12KB 01. Introduction/4. Spark Architecture and RDDs.vtt 12KB 11. Deploying to AWS EMR (Optional)/2. Packing a Spark Jar for EMR.vtt 12KB 46. Streaming Chapter 3- Structured Streaming/4. Windows and Watermarks.vtt 12KB 14. RDD Performance/1. Transformations and Actions.vtt 12KB 11. Deploying to AWS EMR (Optional)/1. How to start an EMR Spark Cluster.vtt 12KB 14. RDD Performance/3. Narrow vs Wide Transformations.vtt 11KB 33. Linear Regression Models/3. Assembling a Vector of Features.vtt 11KB 32. Module 3 - SparkML for Machine Learning/4. Supervised vs Unsupervised Learning.vtt 11KB 17. Datasets/4. Filters using Columns.vtt 11KB 28. User Defined Functions/1. How to use a Lambda to write a UDF in Spark.vtt 11KB 45. Streaming Chapter 2 - Streaming with Apache Kafka/8. Adding a Slide Interval.vtt 11KB 10. Sorts and Coalesce/1. Why do sorts not work with foreach in Spark.vtt 11KB 06. PairRDDs/2. Building a PairRDD.vtt 10KB 05. Tuples/2. Tuples and RDDs.vtt 10KB 07. FlatMaps and Filters/1. FlatMaps.vtt 10KB 28. User Defined Functions/3. Using a UDF in Spark SQL.vtt 10KB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/5. Streaming Transformations.vtt 10KB 45. Streaming Chapter 2 - Streaming with Apache Kafka/2. Installing Kafka.vtt 10KB 06. PairRDDs/1. Overview of PairRDDs.vtt 10KB 40. Logistic Regression/2. TrueFalse Negatives and Postives.vtt 10KB 32. Module 3 - SparkML for Machine Learning/5. The Model Building Process.vtt 10KB 29. SparkSQL Performance/3. Update - Setting spark.sql.shuffle.partitions.vtt 9KB 45. Streaming Chapter 2 - Streaming with Apache Kafka/6. Writing a Kafka Aggegration.vtt 9KB 27. Practical Exercise/1. Building a Pivot Table with Multiple Aggregations.vtt 9KB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/8. Windowing Batches.vtt 9KB 13. Big Data Big Exercise/2. Warmup.vtt 9KB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/2. Streaming Chapter 1 - Introduction to Streaming.vtt 9KB 11. Deploying to AWS EMR (Optional)/3. Running a Spark Job on EMR.vtt 9KB 12. Joins/1. Inner Joins.vtt 9KB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/3. DStreams.vtt 9KB 30. HashAggregation/1. Explaining Execution Plans.vtt 8KB 34. Training Data/5. Assessing Model Accuracy with R2 and RMSE.vtt 8KB 05. Tuples/1. RDDs of Objects.vtt 8KB 33. Linear Regression Models/4. Model Fitting.vtt 8KB 46. Streaming Chapter 3- Structured Streaming/6. Kafka Structured Streaming Pipelines.vtt 8KB 31. SparkSQL Performance vs RDDs/1. SparkSQL Performance vs RDDs.vtt 8KB 13. Big Data Big Exercise/3. Main Exercise Requirments.vtt 8KB 14. RDD Performance/5. Dealing with Key Skews.vtt 8KB 29. SparkSQL Performance/2. How does SQL and DataFrame performance compare.vtt 8KB 33. Linear Regression Models/2. Beginning Coding Linear Regressions.vtt 7KB 04. Mapping and Outputting/1. Mapping Operations.vtt 7KB 33. Linear Regression Models/1. Introducing Linear Regression.vtt 7KB 06. PairRDDs/4. Using the Fluent API.vtt 7KB 14. RDD Performance/2. The DAG and SparkUI.vtt 7KB 36. Feature Selection/2. Correlation of Fetures.vtt 7KB 17. Datasets/1. Dataset Basics.vtt 7KB 14. RDD Performance/6. Avoiding groupByKey and using map-side-reduces instead.vtt 7KB 17. Datasets/2. Filters using Expressions.vtt 7KB 25. Pivot Tables/1. How does a Pivot Table work.vtt 7KB 21. Date Formatting/1. Date Formatting.vtt 7KB 41. Decision Trees/4. Random Forests.vtt 7KB 13. Big Data Big Exercise/5. Walkthrough - Step 3.vtt 7KB 04. Mapping and Outputting/3. Counting Big Data Items.vtt 7KB 15. Module 2 - Chapter 1 SparkSQL Introduction/2. Introducing SparkSQL.vtt 7KB 41. Decision Trees/3. Interpreting a Decision Tree.vtt 7KB 04. Mapping and Outputting/4. If you've had a NotSerializableException in Spark.vtt 7KB 43. Recommender Systems/1. Overview and Matrix Factorisation.vtt 6KB 13. Big Data Big Exercise/11. Walkthrough - Step 9, adding titles and using the Big Data file.vtt 6KB 34. Training Data/2. Using data from Kaggle.vtt 6KB 11. Deploying to AWS EMR (Optional)/4. Understanding the Job Progress Output.vtt 6KB 34. Training Data/4. Splitting Training Data with Random Splits.vtt 6KB 34. Training Data/1. Training vs Test and Holdout Data.vtt 6KB 28. User Defined Functions/2. Using more than one input parameter in Spark UDF.vtt 6KB 04. Mapping and Outputting/2. Outputting Results to the Console.vtt 5KB 06. PairRDDs/5. Grouping By Key.vtt 5KB 45. Streaming Chapter 2 - Streaming with Apache Kafka/4. Integrating Kafka with Spark.vtt 5KB 13. Big Data Big Exercise/1. Introducing the Requirements.vtt 5KB 07. FlatMaps and Filters/2. Filters.vtt 5KB 01. Introduction/3. Module 1 - Introduction.vtt 5KB 11. Deploying to AWS EMR (Optional)/5. Calculating EMR costs and Terminating the cluster.vtt 5KB 10. Sorts and Coalesce/3. What is Coalesce used for in Spark.vtt 5KB 13. Big Data Big Exercise/4. Walkthrough - Step 2.vtt 5KB 36. Feature Selection/4. Data Preparation.vtt 5KB 34. Training Data/3. Practical Walkthrough.vtt 5KB 32. Module 3 - SparkML for Machine Learning/2. What is Machine Learning.vtt 5KB 13. Big Data Big Exercise/8. Walkthrough - Step 6.vtt 4KB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/7. SparkUI for Streaming Jobs.vtt 4KB 12. Joins/4. Full Joins and Cartesians.vtt 4KB 17. Datasets/3. Filters using Lambdas.vtt 4KB 12. Joins/3. Right Outer Joins.vtt 4KB 01. Introduction/1. Welcome.vtt 4KB 32. Module 3 - SparkML for Machine Learning/3. Coming up in this Module - and introducing Kaggle.vtt 3KB 13. Big Data Big Exercise/9. Walkthrough - Step 7.vtt 3KB 13. Big Data Big Exercise/7. Walkthrough - Step 5.vtt 3KB 30. HashAggregation/4. SQL vs DataFrames Performance Results.vtt 3KB 13. Big Data Big Exercise/10. Walkthrough - Step 8.vtt 3KB 13. Big Data Big Exercise/6. Walkthrough - Step 4.vtt 2KB 45. Streaming Chapter 2 - Streaming with Apache Kafka/7. Adding a Window.vtt 2KB 02. Getting Started/1. Warning - Java 91011 is not supported by Spark.html 1KB 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/3.1 LoggingServer.zip.zip 560B 01. Introduction/2. Downloading the Code.html 447B 15. Module 2 - Chapter 1 SparkSQL Introduction/1. Code for SQLDataFrames Section.html 446B 44. Module 4 -Spark Streaming and Structured Streaming with Kafka/1. Welcome to Module 4 - Spark Streaming.html 345B 32. Module 3 - SparkML for Machine Learning/1. Welcome to Module 3.html 282B 40. Logistic Regression/1. Code for chapters 9-12.html 188B udemycoursedownloader.com.url 132B Udemy Course downloader.txt 94B