589689.xyz

[] Udemy - A deep understanding of deep learning (with Python intro)

  • 收录时间:2022-01-19 15:58:31
  • 文件大小:21GB
  • 下载次数:1
  • 最近下载:2022-01-19 15:58:31
  • 磁力链接:

文件列表

  1. 19 Understand and design CNNs/005 Examine feature map activations.mp4 261MB
  2. 22 Style transfer/004 Transferring the screaming bathtub.mp4 217MB
  3. 19 Understand and design CNNs/012 The EMNIST dataset (letter recognition).mp4 201MB
  4. 19 Understand and design CNNs/002 CNN to classify MNIST digits.mp4 200MB
  5. 07 ANNs/013 Multi-output ANN (iris dataset).mp4 187MB
  6. 19 Understand and design CNNs/004 Classify Gaussian blurs.mp4 185MB
  7. 09 Regularization/004 Dropout regularization in practice.mp4 183MB
  8. 16 Autoencoders/006 Autoencoder with tied weights.mp4 178MB
  9. 18 Convolution and transformations/003 Convolution in code.mp4 173MB
  10. 08 Overfitting and cross-validation/006 Cross-validation -- DataLoader.mp4 172MB
  11. 23 Generative adversarial networks/002 Linear GAN with MNIST.mp4 170MB
  12. 07 ANNs/009 Learning rates comparison.mp4 169MB
  13. 12 More on data/003 CodeChallenge_ unbalanced data.mp4 166MB
  14. 11 FFNs/003 FFN to classify digits.mp4 162MB
  15. 16 Autoencoders/005 The latent code of MNIST.mp4 162MB
  16. 07 ANNs/018 Model depth vs. breadth.mp4 159MB
  17. 12 More on data/007 Data feature augmentation.mp4 158MB
  18. 21 Transfer learning/007 Pretraining with autoencoders.mp4 157MB
  19. 14 FFN milestone projects/004 Project 2_ My solution.mp4 156MB
  20. 21 Transfer learning/008 CIFAR10 with autoencoder-pretrained model.mp4 153MB
  21. 07 ANNs/008 ANN for classifying qwerties.mp4 151MB
  22. 21 Transfer learning/005 Transfer learning with ResNet-18.mp4 148MB
  23. 19 Understand and design CNNs/008 Do autoencoders clean Gaussians_.mp4 148MB
  24. 15 Weight inits and investigations/009 Learning-related changes in weights.mp4 147MB
  25. 07 ANNs/010 Multilayer ANN.mp4 145MB
  26. 10 Metaparameters (activations, optimizers)/002 The _wine quality_ dataset.mp4 143MB
  27. 08 Overfitting and cross-validation/005 Cross-validation -- scikitlearn.mp4 143MB
  28. 25 Where to go from here_/002 How to read academic DL papers.mp4 142MB
  29. 18 Convolution and transformations/012 Creating and using custom DataLoaders.mp4 140MB
  30. 07 ANNs/007 CodeChallenge_ manipulate regression slopes.mp4 139MB
  31. 16 Autoencoders/004 AEs for occlusion.mp4 138MB
  32. 10 Metaparameters (activations, optimizers)/015 Loss functions in PyTorch.mp4 138MB
  33. 19 Understand and design CNNs/011 Discover the Gaussian parameters.mp4 137MB
  34. 09 Regularization/003 Dropout regularization.mp4 136MB
  35. 12 More on data/001 Anatomy of a torch dataset and dataloader.mp4 136MB
  36. 23 Generative adversarial networks/004 CNN GAN with Gaussians.mp4 136MB
  37. 12 More on data/002 Data size and network size.mp4 136MB
  38. 06 Gradient descent/007 Parametric experiments on g.d.mp4 136MB
  39. 07 ANNs/006 ANN for regression.mp4 136MB
  40. 16 Autoencoders/003 CodeChallenge_ How many units_.mp4 135MB
  41. 15 Weight inits and investigations/005 Xavier and Kaiming initializations.mp4 134MB
  42. 19 Understand and design CNNs/010 CodeChallenge_ Custom loss functions.mp4 133MB
  43. 07 ANNs/016 Depth vs. breadth_ number of parameters.mp4 132MB
  44. 18 Convolution and transformations/011 Image transforms.mp4 130MB
  45. 15 Weight inits and investigations/006 CodeChallenge_ Xavier vs. Kaiming.mp4 127MB
  46. 12 More on data/010 Save the best-performing model.mp4 127MB
  47. 12 More on data/005 Data oversampling in MNIST.mp4 123MB
  48. 10 Metaparameters (activations, optimizers)/013 CodeChallenge_ Predict sugar.mp4 122MB
  49. 15 Weight inits and investigations/002 A surprising demo of weight initializations.mp4 122MB
  50. 03 Concepts in deep learning/003 The role of DL in science and knowledge.mp4 122MB
  51. 19 Understand and design CNNs/006 CodeChallenge_ Softcode internal parameters.mp4 120MB
  52. 06 Gradient descent/003 Gradient descent in 1D.mp4 119MB
  53. 10 Metaparameters (activations, optimizers)/003 CodeChallenge_ Minibatch size in the wine dataset.mp4 119MB
  54. 21 Transfer learning/003 CodeChallenge_ letters to numbers.mp4 119MB
  55. 20 CNN milestone projects/002 Project 1_ My solution.mp4 119MB
  56. 16 Autoencoders/002 Denoising MNIST.mp4 119MB
  57. 11 FFNs/006 Distributions of weights pre- and post-learning.mp4 116MB
  58. 03 Concepts in deep learning/005 Are artificial _neurons_ like biological neurons_.mp4 115MB
  59. 06 Gradient descent/008 CodeChallenge_ fixed vs. dynamic learning rate.mp4 115MB
  60. 09 Regularization/007 L2 regularization in practice.mp4 110MB
  61. 29 Python intro_ Functions/008 Classes and object-oriented programming.mp4 108MB
  62. 31 Python intro_ Text and plots/004 Making the graphs look nicer.mp4 108MB
  63. 13 Measuring model performance/004 APRF example 1_ wine quality.mp4 107MB
  64. 12 More on data/006 Data noise augmentation (with devset+test).mp4 106MB
  65. 05 Math, numpy, PyTorch/010 Entropy and cross-entropy.mp4 106MB
  66. 15 Weight inits and investigations/004 CodeChallenge_ Weight variance inits.mp4 104MB
  67. 11 FFNs/002 The MNIST dataset.mp4 101MB
  68. 18 Convolution and transformations/005 The Conv2 class in PyTorch.mp4 100MB
  69. 30 Python intro_ Flow control/010 Function error checking and handling.mp4 100MB
  70. 10 Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs.mp4 100MB
  71. 14 FFN milestone projects/002 Project 1_ My solution.mp4 100MB
  72. 09 Regularization/008 L1 regularization in practice.mp4 99MB
  73. 13 Measuring model performance/005 APRF example 2_ MNIST.mp4 99MB
  74. 08 Overfitting and cross-validation/004 Cross-validation -- manual separation.mp4 98MB
  75. 10 Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum).mp4 98MB
  76. 18 Convolution and transformations/001 Convolution_ concepts.mp4 98MB
  77. 10 Metaparameters (activations, optimizers)/009 Activation functions.mp4 97MB
  78. 10 Metaparameters (activations, optimizers)/023 Learning rate decay.mp4 97MB
  79. 21 Transfer learning/001 Transfer learning_ What, why, and when_.mp4 97MB
  80. 11 FFNs/005 CodeChallenge_ Data normalization.mp4 96MB
  81. 05 Math, numpy, PyTorch/008 Softmax.mp4 96MB
  82. 06 Gradient descent/005 Gradient descent in 2D.mp4 96MB
  83. 09 Regularization/012 CodeChallenge_ Effects of mini-batch size.mp4 95MB
  84. 11 FFNs/007 CodeChallenge_ MNIST and breadth vs. depth.mp4 95MB
  85. 07 ANNs/014 CodeChallenge_ more qwerties!.mp4 95MB
  86. 31 Python intro_ Text and plots/001 Printing and string interpolation.mp4 95MB
  87. 19 Understand and design CNNs/007 CodeChallenge_ How wide the FC_.mp4 94MB
  88. 31 Python intro_ Text and plots/006 Images.mp4 94MB
  89. 15 Weight inits and investigations/008 Freezing weights during learning.mp4 93MB
  90. 18 Convolution and transformations/007 Transpose convolution.mp4 93MB
  91. 19 Understand and design CNNs/015 CodeChallenge_ Varying number of channels.mp4 92MB
  92. 10 Metaparameters (activations, optimizers)/010 Activation functions in PyTorch.mp4 91MB
  93. 30 Python intro_ Flow control/002 If-else statements, part 2.mp4 91MB
  94. 30 Python intro_ Flow control/008 while loops.mp4 91MB
  95. 30 Python intro_ Flow control/006 Initializing variables.mp4 91MB
  96. 21 Transfer learning/002 Transfer learning_ MNIST -_ FMNIST.mp4 90MB
  97. 10 Metaparameters (activations, optimizers)/014 Loss functions.mp4 90MB
  98. 23 Generative adversarial networks/001 GAN_ What, why, and how.mp4 90MB
  99. 07 ANNs/017 Defining models using sequential vs. class.mp4 89MB
  100. 19 Understand and design CNNs/009 CodeChallenge_ AEs and occluded Gaussians.mp4 89MB
  101. 09 Regularization/010 Batch training in action.mp4 89MB
  102. 18 Convolution and transformations/008 Max_mean pooling.mp4 89MB
  103. 17 Running models on a GPU/001 What is a GPU and why use it_.mp4 89MB
  104. 29 Python intro_ Functions/005 Creating functions.mp4 88MB
  105. 05 Math, numpy, PyTorch/011 Min_max and argmin_argmax.mp4 88MB
  106. 08 Overfitting and cross-validation/002 Cross-validation.mp4 88MB
  107. 15 Weight inits and investigations/007 CodeChallenge_ Identically random weights.mp4 88MB
  108. 30 Python intro_ Flow control/003 For loops.mp4 87MB
  109. 10 Metaparameters (activations, optimizers)/020 Optimizers comparison.mp4 87MB
  110. 31 Python intro_ Text and plots/003 Subplot geometry.mp4 87MB
  111. 05 Math, numpy, PyTorch/007 Matrix multiplication.mp4 86MB
  112. 05 Math, numpy, PyTorch/013 Random sampling and sampling variability.mp4 85MB
  113. 09 Regularization/006 Weight regularization (L1_L2)_ math.mp4 85MB
  114. 07 ANNs/001 The perceptron and ANN architecture.mp4 84MB
  115. 19 Understand and design CNNs/013 Dropout in CNNs.mp4 83MB
  116. 13 Measuring model performance/007 Computation time.mp4 82MB
  117. 05 Math, numpy, PyTorch/015 The t-test.mp4 81MB
  118. 29 Python intro_ Functions/003 Python libraries (pandas).mp4 81MB
  119. 18 Convolution and transformations/009 Pooling in PyTorch.mp4 81MB
  120. 05 Math, numpy, PyTorch/012 Mean and variance.mp4 81MB
  121. 05 Math, numpy, PyTorch/016 Derivatives_ intuition and polynomials.mp4 80MB
  122. 09 Regularization/001 Regularization_ Concept and methods.mp4 80MB
  123. 15 Weight inits and investigations/003 Theory_ Why and how to initialize weights.mp4 79MB
  124. 08 Overfitting and cross-validation/007 Splitting data into train, devset, test.mp4 79MB
  125. 27 Python intro_ Data types/003 Math and printing.mp4 78MB
  126. 11 FFNs/010 Shifted MNIST.mp4 78MB
  127. 27 Python intro_ Data types/002 Variables.mp4 78MB
  128. 06 Gradient descent/004 CodeChallenge_ unfortunate starting value.mp4 77MB
  129. 27 Python intro_ Data types/007 Booleans.mp4 77MB
  130. 10 Metaparameters (activations, optimizers)/006 Batch normalization.mp4 77MB
  131. 10 Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam).mp4 77MB
  132. 17 Running models on a GPU/002 Implementation.mp4 77MB
  133. 20 CNN milestone projects/005 Project 4_ Psychometric functions in CNNs.mp4 76MB
  134. 14 FFN milestone projects/006 Project 3_ My solution.mp4 75MB
  135. 24 Ethics of deep learning/004 Will deep learning take our jobs_.mp4 75MB
  136. 30 Python intro_ Flow control/007 Single-line loops (list comprehension).mp4 75MB
  137. 03 Concepts in deep learning/004 Running experiments to understand DL.mp4 75MB
  138. 11 FFNs/011 CodeChallenge_ The mystery of the missing 7.mp4 74MB
  139. 10 Metaparameters (activations, optimizers)/011 Activation functions comparison.mp4 74MB
  140. 08 Overfitting and cross-validation/001 What is overfitting and is it as bad as they say_.mp4 73MB
  141. 03 Concepts in deep learning/002 How models _learn_.mp4 73MB
  142. 13 Measuring model performance/002 Accuracy, precision, recall, F1.mp4 73MB
  143. 07 ANNs/015 Comparing the number of hidden units.mp4 71MB
  144. 30 Python intro_ Flow control/009 Broadcasting in numpy.mp4 71MB
  145. 07 ANNs/002 A geometric view of ANNs.mp4 71MB
  146. 18 Convolution and transformations/002 Feature maps and convolution kernels.mp4 70MB
  147. 24 Ethics of deep learning/005 Accountability and making ethical AI.mp4 70MB
  148. 05 Math, numpy, PyTorch/014 Reproducible randomness via seeding.mp4 70MB
  149. 15 Weight inits and investigations/001 Explanation of weight matrix sizes.mp4 69MB
  150. 06 Gradient descent/001 Overview of gradient descent.mp4 68MB
  151. 22 Style transfer/003 The style transfer algorithm.mp4 67MB
  152. 06 Gradient descent/002 What about local minima_.mp4 67MB
  153. 18 Convolution and transformations/004 Convolution parameters (stride, padding).mp4 67MB
  154. 30 Python intro_ Flow control/001 If-else statements.mp4 67MB
  155. 22 Style transfer/002 The Gram matrix (feature activation covariance).mp4 66MB
  156. 24 Ethics of deep learning/003 Some other possible ethical scenarios.mp4 66MB
  157. 29 Python intro_ Functions/006 Global and local variable scopes.mp4 66MB
  158. 24 Ethics of deep learning/001 Will AI save us or destroy us_.mp4 66MB
  159. 03 Concepts in deep learning/001 What is an artificial neural network_.mp4 65MB
  160. 10 Metaparameters (activations, optimizers)/005 The importance of data normalization.mp4 65MB
  161. 10 Metaparameters (activations, optimizers)/012 CodeChallenge_ Compare relu variants.mp4 64MB
  162. 29 Python intro_ Functions/002 Python libraries (numpy).mp4 63MB
  163. 23 Generative adversarial networks/003 CodeChallenge_ Linear GAN with FMNIST.mp4 63MB
  164. 13 Measuring model performance/006 CodeChallenge_ MNIST with unequal groups.mp4 62MB
  165. 09 Regularization/009 Training in mini-batches.mp4 62MB
  166. 10 Metaparameters (activations, optimizers)/018 SGD with momentum.mp4 62MB
  167. 10 Metaparameters (activations, optimizers)/007 Batch normalization in practice.mp4 62MB
  168. 10 Metaparameters (activations, optimizers)/024 How to pick the right metaparameters.mp4 62MB
  169. 23 Generative adversarial networks/007 CodeChallenge_ CNN GAN with CIFAR.mp4 61MB
  170. 08 Overfitting and cross-validation/008 Cross-validation on regression.mp4 60MB
  171. 11 FFNs/009 Scrambled MNIST.mp4 60MB
  172. 09 Regularization/011 The importance of equal batch sizes.mp4 60MB
  173. 10 Metaparameters (activations, optimizers)/004 Data normalization.mp4 60MB
  174. 31 Python intro_ Text and plots/005 Seaborn.mp4 60MB
  175. 18 Convolution and transformations/006 CodeChallenge_ Choose the parameters.mp4 59MB
  176. 30 Python intro_ Flow control/004 Enumerate and zip.mp4 59MB
  177. 07 ANNs/021 Reflection_ Are DL models understandable yet_.mp4 59MB
  178. 19 Understand and design CNNs/003 CNN on shifted MNIST.mp4 58MB
  179. 07 ANNs/003 ANN math part 1 (forward prop).mp4 58MB
  180. 19 Understand and design CNNs/001 The canonical CNN architecture.mp4 56MB
  181. 12 More on data/009 Save and load trained models.mp4 56MB
  182. 05 Math, numpy, PyTorch/018 Derivatives_ product and chain rules.mp4 56MB
  183. 18 Convolution and transformations/010 To pool or to stride_.mp4 56MB
  184. 19 Understand and design CNNs/014 CodeChallenge_ How low can you go_.mp4 55MB
  185. 27 Python intro_ Data types/004 Lists (1 of 2).mp4 55MB
  186. 01 Introduction/001 How to learn from this course.mp4 55MB
  187. 23 Generative adversarial networks/006 CNN GAN with FMNIST.mp4 55MB
  188. 01 Introduction/002 Using Udemy like a pro.mp4 54MB
  189. 12 More on data/004 What to do about unbalanced designs_.mp4 54MB
  190. 09 Regularization/005 Dropout example 2.mp4 54MB
  191. 31 Python intro_ Text and plots/002 Plotting dots and lines.mp4 54MB
  192. 22 Style transfer/005 CodeChallenge_ Style transfer with AlexNet.mp4 53MB
  193. 23 Generative adversarial networks/005 CodeChallenge_ Gaussians with fewer layers.mp4 53MB
  194. 10 Metaparameters (activations, optimizers)/022 CodeChallenge_ Adam with L2 regularization.mp4 53MB
  195. 17 Running models on a GPU/003 CodeChallenge_ Run an experiment on the GPU.mp4 53MB
  196. 24 Ethics of deep learning/002 Example case studies.mp4 53MB
  197. 07 ANNs/005 ANN math part 3 (backprop).mp4 53MB
  198. 13 Measuring model performance/003 APRF in code.mp4 52MB
  199. 07 ANNs/019 CodeChallenge_ convert sequential to class.mp4 51MB
  200. 28 Python intro_ Indexing, slicing/001 Indexing.mp4 51MB
  201. 05 Math, numpy, PyTorch/002 Spectral theories in mathematics.mp4 51MB
  202. 27 Python intro_ Data types/008 Dictionaries.mp4 51MB
  203. 14 FFN milestone projects/003 Project 2_ Predicting heart disease.mp4 51MB
  204. 07 ANNs/011 Linear solutions to linear problems.mp4 50MB
  205. 05 Math, numpy, PyTorch/006 OMG it's the dot product!.mp4 50MB
  206. 10 Metaparameters (activations, optimizers)/021 CodeChallenge_ Optimizers and... something.mp4 50MB
  207. 11 FFNs/012 Universal approximation theorem.mp4 49MB
  208. 16 Autoencoders/001 What are autoencoders and what do they do_.mp4 49MB
  209. 29 Python intro_ Functions/004 Getting help on functions.mp4 49MB
  210. 14 FFN milestone projects/001 Project 1_ A gratuitously complex adding machine.mp4 49MB
  211. 07 ANNs/004 ANN math part 2 (errors, loss, cost).mp4 48MB
  212. 28 Python intro_ Indexing, slicing/002 Slicing.mp4 48MB
  213. 20 CNN milestone projects/001 Project 1_ Import and classify CIFAR10.mp4 48MB
  214. 27 Python intro_ Data types/005 Lists (2 of 2).mp4 47MB
  215. 11 FFNs/008 CodeChallenge_ Optimizers and MNIST.mp4 46MB
  216. 02 Download all course materials/001 Downloading and using the code.mp4 46MB
  217. 05 Math, numpy, PyTorch/017 Derivatives find minima.mp4 45MB
  218. 14 FFN milestone projects/005 Project 3_ FFN for missing data interpolation.mp4 45MB
  219. 13 Measuring model performance/008 Better performance in test than train_.mp4 45MB
  220. 05 Math, numpy, PyTorch/009 Logarithms.mp4 44MB
  221. 12 More on data/008 Getting data into colab.mp4 44MB
  222. 31 Python intro_ Text and plots/007 Export plots in low and high resolution.mp4 44MB
  223. 25 Where to go from here_/001 How to learn topic _X_ in deep learning_.mp4 42MB
  224. 12 More on data/011 Where to find online datasets.mp4 42MB
  225. 10 Metaparameters (activations, optimizers)/008 CodeChallenge_ Batch-normalize the qwerties.mp4 41MB
  226. 21 Transfer learning/004 Famous CNN architectures.mp4 41MB
  227. 11 FFNs/004 CodeChallenge_ Binarized MNIST images.mp4 41MB
  228. 22 Style transfer/001 What is style transfer and how does it work_.mp4 41MB
  229. 13 Measuring model performance/001 Two perspectives of the world.mp4 40MB
  230. 06 Gradient descent/006 CodeChallenge_ 2D gradient ascent.mp4 39MB
  231. 09 Regularization/002 train() and eval() modes.mp4 38MB
  232. 05 Math, numpy, PyTorch/003 Terms and datatypes in math and computers.mp4 38MB
  233. 05 Math, numpy, PyTorch/005 Vector and matrix transpose.mp4 38MB
  234. 27 Python intro_ Data types/006 Tuples.mp4 36MB
  235. 20 CNN milestone projects/003 Project 2_ CIFAR-autoencoder.mp4 33MB
  236. 05 Math, numpy, PyTorch/004 Converting reality to numbers.mp4 33MB
  237. 30 Python intro_ Flow control/005 Continue.mp4 33MB
  238. 10 Metaparameters (activations, optimizers)/001 What are _metaparameters__.mp4 33MB
  239. 08 Overfitting and cross-validation/003 Generalization.mp4 32MB
  240. 06 Gradient descent/009 Vanishing and exploding gradients.mp4 30MB
  241. 29 Python intro_ Functions/001 Inputs and outputs.mp4 29MB
  242. 15 Weight inits and investigations/010 Use default inits or apply your own_.mp4 28MB
  243. 07 ANNs/012 Why multilayer linear models don't exist.mp4 26MB
  244. 20 CNN milestone projects/004 Project 3_ FMNIST.mp4 26MB
  245. 11 FFNs/001 What are fully-connected and feedforward networks_.mp4 26MB
  246. 29 Python intro_ Functions/007 Copies and referents of variables.mp4 24MB
  247. 04 About the Python tutorial/001 Should you watch the Python tutorial_.mp4 24MB
  248. 06 Gradient descent/010 Tangent_ Notebook revision history.mp4 22MB
  249. 27 Python intro_ Data types/001 How to learn from the Python tutorial.mp4 22MB
  250. 19 Understand and design CNNs/016 So many possibilities! How to create a CNN_.mp4 21MB
  251. 21 Transfer learning/006 CodeChallenge_ VGG-16.mp4 20MB
  252. 05 Math, numpy, PyTorch/001 Introduction to this section.mp4 11MB
  253. 02 Download all course materials/002 My policy on code-sharing.mp4 10MB
  254. 02 Download all course materials/003 DUDL_PythonCode.zip 701KB
  255. 19 Understand and design CNNs/005 Examine feature map activations.en.srt 41KB
  256. 19 Understand and design CNNs/002 CNN to classify MNIST digits.en.srt 38KB
  257. 07 ANNs/013 Multi-output ANN (iris dataset).en.srt 37KB
  258. 07 ANNs/009 Learning rates comparison.en.srt 36KB
  259. 19 Understand and design CNNs/012 The EMNIST dataset (letter recognition).en.srt 36KB
  260. 07 ANNs/006 ANN for regression.en.srt 36KB
  261. 16 Autoencoders/006 Autoencoder with tied weights.en.srt 35KB
  262. 19 Understand and design CNNs/004 Classify Gaussian blurs.en.srt 34KB
  263. 07 ANNs/008 ANN for classifying qwerties.en.srt 34KB
  264. 09 Regularization/004 Dropout regularization in practice.en.srt 33KB
  265. 11 FFNs/003 FFN to classify digits.en.srt 33KB
  266. 15 Weight inits and investigations/009 Learning-related changes in weights.en.srt 33KB
  267. 18 Convolution and transformations/001 Convolution_ concepts.en.srt 33KB
  268. 22 Style transfer/004 Transferring the screaming bathtub.en.srt 32KB
  269. 23 Generative adversarial networks/002 Linear GAN with MNIST.en.srt 32KB
  270. 16 Autoencoders/005 The latent code of MNIST.en.srt 32KB
  271. 09 Regularization/003 Dropout regularization.en.srt 31KB
  272. 07 ANNs/018 Model depth vs. breadth.en.srt 31KB
  273. 29 Python intro_ Functions/005 Creating functions.en.srt 31KB
  274. 18 Convolution and transformations/003 Convolution in code.en.srt 31KB
  275. 08 Overfitting and cross-validation/005 Cross-validation -- scikitlearn.en.srt 30KB
  276. 19 Understand and design CNNs/010 CodeChallenge_ Custom loss functions.en.srt 30KB
  277. 07 ANNs/010 Multilayer ANN.en.srt 29KB
  278. 12 More on data/003 CodeChallenge_ unbalanced data.en.srt 29KB
  279. 16 Autoencoders/003 CodeChallenge_ How many units_.en.srt 29KB
  280. 21 Transfer learning/007 Pretraining with autoencoders.en.srt 29KB
  281. 08 Overfitting and cross-validation/006 Cross-validation -- DataLoader.en.srt 29KB
  282. 12 More on data/007 Data feature augmentation.en.srt 28KB
  283. 07 ANNs/007 CodeChallenge_ manipulate regression slopes.en.srt 28KB
  284. 30 Python intro_ Flow control/008 while loops.en.srt 28KB
  285. 14 FFN milestone projects/004 Project 2_ My solution.en.srt 28KB
  286. 27 Python intro_ Data types/007 Booleans.en.srt 28KB
  287. 05 Math, numpy, PyTorch/008 Softmax.en.srt 28KB
  288. 27 Python intro_ Data types/002 Variables.en.srt 27KB
  289. 06 Gradient descent/007 Parametric experiments on g.d.en.srt 27KB
  290. 09 Regularization/006 Weight regularization (L1_L2)_ math.en.srt 27KB
  291. 31 Python intro_ Text and plots/004 Making the graphs look nicer.en.srt 27KB
  292. 10 Metaparameters (activations, optimizers)/015 Loss functions in PyTorch.en.srt 27KB
  293. 07 ANNs/001 The perceptron and ANN architecture.en.srt 27KB
  294. 27 Python intro_ Data types/003 Math and printing.en.srt 27KB
  295. 18 Convolution and transformations/008 Max_mean pooling.en.srt 27KB
  296. 29 Python intro_ Functions/008 Classes and object-oriented programming.en.srt 27KB
  297. 18 Convolution and transformations/012 Creating and using custom DataLoaders.en.srt 26KB
  298. 10 Metaparameters (activations, optimizers)/009 Activation functions.en.srt 26KB
  299. 12 More on data/001 Anatomy of a torch dataset and dataloader.en.srt 26KB
  300. 21 Transfer learning/008 CIFAR10 with autoencoder-pretrained model.en.srt 26KB
  301. 31 Python intro_ Text and plots/006 Images.en.srt 26KB
  302. 07 ANNs/016 Depth vs. breadth_ number of parameters.en.srt 26KB
  303. 10 Metaparameters (activations, optimizers)/002 The _wine quality_ dataset.en.srt 26KB
  304. 30 Python intro_ Flow control/006 Initializing variables.en.srt 26KB
  305. 25 Where to go from here_/002 How to read academic DL papers.en.srt 25KB
  306. 16 Autoencoders/004 AEs for occlusion.en.srt 25KB
  307. 30 Python intro_ Flow control/010 Function error checking and handling.en.srt 25KB
  308. 30 Python intro_ Flow control/003 For loops.en.srt 25KB
  309. 19 Understand and design CNNs/006 CodeChallenge_ Softcode internal parameters.en.srt 25KB
  310. 10 Metaparameters (activations, optimizers)/013 CodeChallenge_ Predict sugar.en.srt 25KB
  311. 08 Overfitting and cross-validation/002 Cross-validation.en.srt 25KB
  312. 21 Transfer learning/001 Transfer learning_ What, why, and when_.en.srt 25KB
  313. 06 Gradient descent/003 Gradient descent in 1D.en.srt 25KB
  314. 15 Weight inits and investigations/006 CodeChallenge_ Xavier vs. Kaiming.en.srt 25KB
  315. 21 Transfer learning/005 Transfer learning with ResNet-18.en.srt 25KB
  316. 11 FFNs/005 CodeChallenge_ Data normalization.en.srt 24KB
  317. 05 Math, numpy, PyTorch/016 Derivatives_ intuition and polynomials.en.srt 24KB
  318. 19 Understand and design CNNs/008 Do autoencoders clean Gaussians_.en.srt 24KB
  319. 31 Python intro_ Text and plots/001 Printing and string interpolation.en.srt 24KB
  320. 10 Metaparameters (activations, optimizers)/014 Loss functions.en.srt 24KB
  321. 03 Concepts in deep learning/005 Are artificial _neurons_ like biological neurons_.en.srt 24KB
  322. 12 More on data/005 Data oversampling in MNIST.en.srt 24KB
  323. 18 Convolution and transformations/011 Image transforms.en.srt 24KB
  324. 15 Weight inits and investigations/002 A surprising demo of weight initializations.en.srt 24KB
  325. 23 Generative adversarial networks/001 GAN_ What, why, and how.en.srt 24KB
  326. 12 More on data/002 Data size and network size.en.srt 23KB
  327. 03 Concepts in deep learning/003 The role of DL in science and knowledge.en.srt 23KB
  328. 19 Understand and design CNNs/011 Discover the Gaussian parameters.en.srt 23KB
  329. 31 Python intro_ Text and plots/003 Subplot geometry.en.srt 23KB
  330. 06 Gradient descent/008 CodeChallenge_ fixed vs. dynamic learning rate.en.srt 23KB
  331. 10 Metaparameters (activations, optimizers)/003 CodeChallenge_ Minibatch size in the wine dataset.en.srt 23KB
  332. 30 Python intro_ Flow control/002 If-else statements, part 2.en.srt 23KB
  333. 16 Autoencoders/002 Denoising MNIST.en.srt 23KB
  334. 15 Weight inits and investigations/005 Xavier and Kaiming initializations.en.srt 23KB
  335. 05 Math, numpy, PyTorch/012 Mean and variance.en.srt 22KB
  336. 17 Running models on a GPU/001 What is a GPU and why use it_.en.srt 22KB
  337. 23 Generative adversarial networks/004 CNN GAN with Gaussians.en.srt 22KB
  338. 10 Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam).en.srt 22KB
  339. 11 FFNs/006 Distributions of weights pre- and post-learning.en.srt 22KB
  340. 12 More on data/010 Save the best-performing model.en.srt 22KB
  341. 30 Python intro_ Flow control/007 Single-line loops (list comprehension).en.srt 22KB
  342. 30 Python intro_ Flow control/001 If-else statements.en.srt 22KB
  343. 06 Gradient descent/005 Gradient descent in 2D.en.srt 21KB
  344. 30 Python intro_ Flow control/009 Broadcasting in numpy.en.srt 21KB
  345. 03 Concepts in deep learning/001 What is an artificial neural network_.en.srt 21KB
  346. 06 Gradient descent/001 Overview of gradient descent.en.srt 21KB
  347. 05 Math, numpy, PyTorch/007 Matrix multiplication.en.srt 21KB
  348. 21 Transfer learning/003 CodeChallenge_ letters to numbers.en.srt 21KB
  349. 27 Python intro_ Data types/004 Lists (1 of 2).en.srt 20KB
  350. 10 Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs.en.srt 20KB
  351. 29 Python intro_ Functions/003 Python libraries (pandas).en.srt 20KB
  352. 29 Python intro_ Functions/002 Python libraries (numpy).en.srt 20KB
  353. 18 Convolution and transformations/007 Transpose convolution.en.srt 20KB
  354. 10 Metaparameters (activations, optimizers)/004 Data normalization.en.srt 20KB
  355. 29 Python intro_ Functions/006 Global and local variable scopes.en.srt 20KB
  356. 18 Convolution and transformations/009 Pooling in PyTorch.en.srt 20KB
  357. 19 Understand and design CNNs/015 CodeChallenge_ Varying number of channels.en.srt 20KB
  358. 05 Math, numpy, PyTorch/015 The t-test.en.srt 19KB
  359. 07 ANNs/002 A geometric view of ANNs.en.srt 19KB
  360. 13 Measuring model performance/004 APRF example 1_ wine quality.en.srt 19KB
  361. 15 Weight inits and investigations/008 Freezing weights during learning.en.srt 19KB
  362. 03 Concepts in deep learning/004 Running experiments to understand DL.en.srt 19KB
  363. 07 ANNs/017 Defining models using sequential vs. class.en.srt 19KB
  364. 09 Regularization/001 Regularization_ Concept and methods.en.srt 19KB
  365. 09 Regularization/007 L2 regularization in practice.en.srt 19KB
  366. 18 Convolution and transformations/005 The Conv2 class in PyTorch.en.srt 19KB
  367. 03 Concepts in deep learning/002 How models _learn_.en.srt 19KB
  368. 11 FFNs/002 The MNIST dataset.en.srt 19KB
  369. 10 Metaparameters (activations, optimizers)/006 Batch normalization.en.srt 19KB
  370. 12 More on data/006 Data noise augmentation (with devset+test).en.srt 19KB
  371. 08 Overfitting and cross-validation/004 Cross-validation -- manual separation.en.srt 19KB
  372. 15 Weight inits and investigations/004 CodeChallenge_ Weight variance inits.en.srt 18KB
  373. 08 Overfitting and cross-validation/001 What is overfitting and is it as bad as they say_.en.srt 18KB
  374. 15 Weight inits and investigations/003 Theory_ Why and how to initialize weights.en.srt 18KB
  375. 05 Math, numpy, PyTorch/011 Min_max and argmin_argmax.en.srt 18KB
  376. 28 Python intro_ Indexing, slicing/001 Indexing.en.srt 18KB
  377. 09 Regularization/012 CodeChallenge_ Effects of mini-batch size.en.srt 18KB
  378. 18 Convolution and transformations/004 Convolution parameters (stride, padding).en.srt 18KB
  379. 13 Measuring model performance/002 Accuracy, precision, recall, F1.en.srt 18KB
  380. 28 Python intro_ Indexing, slicing/002 Slicing.en.srt 18KB
  381. 15 Weight inits and investigations/007 CodeChallenge_ Identically random weights.en.srt 18KB
  382. 10 Metaparameters (activations, optimizers)/023 Learning rate decay.en.srt 18KB
  383. 07 ANNs/014 CodeChallenge_ more qwerties!.en.srt 18KB
  384. 11 FFNs/007 CodeChallenge_ MNIST and breadth vs. depth.en.srt 18KB
  385. 31 Python intro_ Text and plots/002 Plotting dots and lines.en.srt 18KB
  386. 09 Regularization/008 L1 regularization in practice.en.srt 17KB
  387. 07 ANNs/003 ANN math part 1 (forward prop).en.srt 17KB
  388. 15 Weight inits and investigations/001 Explanation of weight matrix sizes.en.srt 17KB
  389. 06 Gradient descent/002 What about local minima_.en.srt 17KB
  390. 13 Measuring model performance/005 APRF example 2_ MNIST.en.srt 17KB
  391. 20 CNN milestone projects/002 Project 1_ My solution.en.srt 17KB
  392. 27 Python intro_ Data types/008 Dictionaries.en.srt 17KB
  393. 14 FFN milestone projects/002 Project 1_ My solution.en.srt 17KB
  394. 10 Metaparameters (activations, optimizers)/010 Activation functions in PyTorch.en.srt 17KB
  395. 16 Autoencoders/001 What are autoencoders and what do they do_.en.srt 17KB
  396. 20 CNN milestone projects/005 Project 4_ Psychometric functions in CNNs.en.srt 17KB
  397. 09 Regularization/009 Training in mini-batches.en.srt 17KB
  398. 22 Style transfer/002 The Gram matrix (feature activation covariance).en.srt 17KB
  399. 24 Ethics of deep learning/005 Accountability and making ethical AI.en.srt 17KB
  400. 10 Metaparameters (activations, optimizers)/024 How to pick the right metaparameters.en.srt 17KB
  401. 19 Understand and design CNNs/007 CodeChallenge_ How wide the FC_.en.srt 16KB
  402. 11 FFNs/010 Shifted MNIST.en.srt 16KB
  403. 05 Math, numpy, PyTorch/013 Random sampling and sampling variability.en.srt 16KB
  404. 30 Python intro_ Flow control/004 Enumerate and zip.en.srt 16KB
  405. 06 Gradient descent/004 CodeChallenge_ unfortunate starting value.en.srt 16KB
  406. 11 FFNs/011 CodeChallenge_ The mystery of the missing 7.en.srt 16KB
  407. 31 Python intro_ Text and plots/005 Seaborn.en.srt 16KB
  408. 19 Understand and design CNNs/001 The canonical CNN architecture.en.srt 16KB
  409. 09 Regularization/010 Batch training in action.en.srt 16KB
  410. 07 ANNs/005 ANN math part 3 (backprop).en.srt 15KB
  411. 24 Ethics of deep learning/003 Some other possible ethical scenarios.en.srt 15KB
  412. 22 Style transfer/003 The style transfer algorithm.en.srt 15KB
  413. 24 Ethics of deep learning/004 Will deep learning take our jobs_.en.srt 15KB
  414. 17 Running models on a GPU/002 Implementation.en.srt 15KB
  415. 10 Metaparameters (activations, optimizers)/020 Optimizers comparison.en.srt 15KB
  416. 07 ANNs/015 Comparing the number of hidden units.en.srt 15KB
  417. 21 Transfer learning/002 Transfer learning_ MNIST -_ FMNIST.en.srt 15KB
  418. 27 Python intro_ Data types/005 Lists (2 of 2).en.srt 15KB
  419. 14 FFN milestone projects/005 Project 3_ FFN for missing data interpolation.en.srt 14KB
  420. 24 Ethics of deep learning/001 Will AI save us or destroy us_.en.srt 14KB
  421. 18 Convolution and transformations/010 To pool or to stride_.en.srt 14KB
  422. 13 Measuring model performance/007 Computation time.en.srt 14KB
  423. 19 Understand and design CNNs/013 Dropout in CNNs.en.srt 14KB
  424. 19 Understand and design CNNs/009 CodeChallenge_ AEs and occluded Gaussians.en.srt 14KB
  425. 18 Convolution and transformations/002 Feature maps and convolution kernels.en.srt 14KB
  426. 05 Math, numpy, PyTorch/006 OMG it's the dot product!.en.srt 14KB
  427. 07 ANNs/004 ANN math part 2 (errors, loss, cost).en.srt 14KB
  428. 23 Generative adversarial networks/003 CodeChallenge_ Linear GAN with FMNIST.en.srt 14KB
  429. 08 Overfitting and cross-validation/007 Splitting data into train, devset, test.en.srt 14KB
  430. 10 Metaparameters (activations, optimizers)/005 The importance of data normalization.en.srt 14KB
  431. 10 Metaparameters (activations, optimizers)/011 Activation functions comparison.en.srt 14KB
  432. 05 Math, numpy, PyTorch/002 Spectral theories in mathematics.en.srt 14KB
  433. 05 Math, numpy, PyTorch/018 Derivatives_ product and chain rules.en.srt 14KB
  434. 13 Measuring model performance/006 CodeChallenge_ MNIST with unequal groups.en.srt 13KB
  435. 07 ANNs/021 Reflection_ Are DL models understandable yet_.en.srt 12KB
  436. 01 Introduction/002 Using Udemy like a pro.en.srt 12KB
  437. 25 Where to go from here_/001 How to learn topic _X_ in deep learning_.en.srt 12KB
  438. 05 Math, numpy, PyTorch/017 Derivatives find minima.en.srt 12KB
  439. 07 ANNs/011 Linear solutions to linear problems.en.srt 12KB
  440. 19 Understand and design CNNs/003 CNN on shifted MNIST.en.srt 12KB
  441. 27 Python intro_ Data types/006 Tuples.en.srt 12KB
  442. 08 Overfitting and cross-validation/008 Cross-validation on regression.en.srt 12KB
  443. 13 Measuring model performance/008 Better performance in test than train_.en.srt 12KB
  444. 14 FFN milestone projects/006 Project 3_ My solution.en.srt 12KB
  445. 05 Math, numpy, PyTorch/014 Reproducible randomness via seeding.en.srt 12KB
  446. 11 FFNs/012 Universal approximation theorem.en.srt 12KB
  447. 23 Generative adversarial networks/007 CodeChallenge_ CNN GAN with CIFAR.en.srt 12KB
  448. 10 Metaparameters (activations, optimizers)/018 SGD with momentum.en.srt 12KB
  449. 05 Math, numpy, PyTorch/009 Logarithms.en.srt 11KB
  450. 31 Python intro_ Text and plots/007 Export plots in low and high resolution.en.srt 11KB
  451. 10 Metaparameters (activations, optimizers)/012 CodeChallenge_ Compare relu variants.en.srt 11KB
  452. 11 FFNs/009 Scrambled MNIST.en.srt 11KB
  453. 29 Python intro_ Functions/004 Getting help on functions.en.srt 11KB
  454. 10 Metaparameters (activations, optimizers)/007 Batch normalization in practice.en.srt 11KB
  455. 14 FFN milestone projects/003 Project 2_ Predicting heart disease.en.srt 11KB
  456. 14 FFN milestone projects/001 Project 1_ A gratuitously complex adding machine.en.srt 11KB
  457. 05 Math, numpy, PyTorch/003 Terms and datatypes in math and computers.en.srt 11KB
  458. 29 Python intro_ Functions/001 Inputs and outputs.en.srt 11KB
  459. 20 CNN milestone projects/001 Project 1_ Import and classify CIFAR10.en.srt 11KB
  460. 22 Style transfer/005 CodeChallenge_ Style transfer with AlexNet.en.srt 10KB
  461. 13 Measuring model performance/001 Two perspectives of the world.en.srt 10KB
  462. 10 Metaparameters (activations, optimizers)/022 CodeChallenge_ Adam with L2 regularization.en.srt 10KB
  463. 09 Regularization/002 train() and eval() modes.en.srt 10KB
  464. 18 Convolution and transformations/006 CodeChallenge_ Choose the parameters.en.srt 10KB
  465. 30 Python intro_ Flow control/005 Continue.en.srt 10KB
  466. 05 Math, numpy, PyTorch/005 Vector and matrix transpose.en.srt 10KB
  467. 19 Understand and design CNNs/014 CodeChallenge_ How low can you go_.en.srt 10KB
  468. 11 FFNs/008 CodeChallenge_ Optimizers and MNIST.en.srt 10KB
  469. 17 Running models on a GPU/003 CodeChallenge_ Run an experiment on the GPU.en.srt 10KB
  470. 07 ANNs/019 CodeChallenge_ convert sequential to class.en.srt 10KB
  471. 05 Math, numpy, PyTorch/004 Converting reality to numbers.en.srt 10KB
  472. 09 Regularization/011 The importance of equal batch sizes.en.srt 9KB
  473. 02 Download all course materials/001 Downloading and using the code.en.srt 9KB
  474. 13 Measuring model performance/003 APRF in code.en.srt 9KB
  475. 10 Metaparameters (activations, optimizers)/021 CodeChallenge_ Optimizers and... something.en.srt 9KB
  476. 23 Generative adversarial networks/006 CNN GAN with FMNIST.en.srt 9KB
  477. 07 ANNs/012 Why multilayer linear models don't exist.en.srt 9KB
  478. 09 Regularization/005 Dropout example 2.en.srt 9KB
  479. 24 Ethics of deep learning/002 Example case studies.en.srt 9KB
  480. 06 Gradient descent/009 Vanishing and exploding gradients.en.srt 9KB
  481. 12 More on data/009 Save and load trained models.en.srt 9KB
  482. 23 Generative adversarial networks/005 CodeChallenge_ Gaussians with fewer layers.en.srt 9KB
  483. 12 More on data/008 Getting data into colab.en.srt 9KB
  484. 08 Overfitting and cross-validation/003 Generalization.en.srt 9KB
  485. 21 Transfer learning/004 Famous CNN architectures.en.srt 9KB
  486. 12 More on data/011 Where to find online datasets.en.srt 8KB
  487. 06 Gradient descent/006 CodeChallenge_ 2D gradient ascent.en.srt 8KB
  488. 10 Metaparameters (activations, optimizers)/008 CodeChallenge_ Batch-normalize the qwerties.en.srt 8KB
  489. 11 FFNs/004 CodeChallenge_ Binarized MNIST images.en.srt 7KB
  490. 10 Metaparameters (activations, optimizers)/001 What are _metaparameters__.en.srt 7KB
  491. 29 Python intro_ Functions/007 Copies and referents of variables.en.srt 7KB
  492. 20 CNN milestone projects/003 Project 2_ CIFAR-autoencoder.en.srt 7KB
  493. 11 FFNs/001 What are fully-connected and feedforward networks_.en.srt 7KB
  494. 19 Understand and design CNNs/016 So many possibilities! How to create a CNN_.en.srt 7KB
  495. 22 Style transfer/001 What is style transfer and how does it work_.en.srt 6KB
  496. 15 Weight inits and investigations/010 Use default inits or apply your own_.en.srt 6KB
  497. 04 About the Python tutorial/001 Should you watch the Python tutorial_.en.srt 6KB
  498. 20 CNN milestone projects/004 Project 3_ FMNIST.en.srt 5KB
  499. 21 Transfer learning/006 CodeChallenge_ VGG-16.en.srt 5KB
  500. 27 Python intro_ Data types/001 How to learn from the Python tutorial.en.srt 5KB
  501. 26 Bonus section/001 Bonus content.html 4KB
  502. 05 Math, numpy, PyTorch/001 Introduction to this section.en.srt 3KB
  503. 06 Gradient descent/010 Tangent_ Notebook revision history.en.srt 3KB
  504. 02 Download all course materials/002 My policy on code-sharing.en.srt 3KB
  505. 07 ANNs/020 Diversity of ANN visual representations.html 1KB
  506. 0. Websites you may like/[FCS Forum].url 133B
  507. 0. Websites you may like/[FreeCourseSite.com].url 127B
  508. 0. Websites you may like/[CourseClub.ME].url 122B
  509. 0. Websites you may like/[GigaCourse.Com].url 49B