[] Coursera - Introduction to Deep Learning
- 收录时间:2019-03-21 15:07:10
- 文件大小:1GB
- 下载次数:75
- 最近下载:2021-01-23 02:16:14
- 磁力链接:
-
文件列表
- 011.Modern CNNs/021. Training tips and tricks for deep CNNs.mp4 58MB
- 019.Applications of RNNs/039. Practical use cases for RNNs.mp4 56MB
- 015.Word Embeddings/030. Word embeddings.mp4 48MB
- 018.Modern RNNs/038. Modern RNNs LSTM and GRU.mp4 48MB
- 007.Matrix derivatives/013. Efficient MLP implementation.mp4 47MB
- 006.The simplest neural network MLP/010. Multilayer perceptron (MLP).mp4 45MB
- 003.Linear model as the simplest neural network/004. Linear classification.mp4 43MB
- 010.Introduction to CNN/020. Our first CNN architecture.mp4 43MB
- 016.Generative Adversarial Networks/033. Applications of adversarial approach.mp4 42MB
- 010.Introduction to CNN/019. Motivation for convolutional layers.mp4 41MB
- 014.More Autoencoders/027. Autoencoder applications.mp4 41MB
- 008.TensorFlow framework/015. What is TensorFlow.mp4 39MB
- 008.TensorFlow framework/016. Our first model in TensorFlow.mp4 37MB
- 015.Word Embeddings/029. Natural language processing primer.mp4 37MB
- 005.Stochastic methods for optimization/009. Gradient descent extensions.mp4 37MB
- 016.Generative Adversarial Networks/032. Generative Adversarial Networks.mp4 36MB
- 003.Linear model as the simplest neural network/003. Linear regression.mp4 36MB
- 017.Introduction to RNN/035. Simple RNN and Backpropagation.mp4 35MB
- 018.Modern RNNs/037. Dealing with vanishing and exploding gradients.mp4 35MB
- 011.Modern CNNs/022. Overview of modern CNN architectures.mp4 32MB
- 006.The simplest neural network MLP/012. Backpropagation.mp4 32MB
- 012.Applications of CNNs/024. A glimpse of other Computer Vision tasks.mp4 31MB
- 017.Introduction to RNN/034. Motivation for recurrent layers.mp4 30MB
- 009.Philosophy of deep learning/017. What Deep Learning is and is not.mp4 29MB
- 014.More Autoencoders/028. Autoencoder applications image generation, data visualization & more.mp4 28MB
- 016.Generative Adversarial Networks/031. Generative models 101.mp4 27MB
- 006.The simplest neural network MLP/011. Chain rule.mp4 27MB
- 004.Regularization in machine learning/006. Overfitting problem and model validation.mp4 26MB
- 018.Modern RNNs/036. The training of RNNs is not that easy.mp4 26MB
- 009.Philosophy of deep learning/018. Deep learning as a language.mp4 25MB
- 013.Intro to Unsupervised Learning/025. Unsupervised learning what it is and why bother.mp4 24MB
- 013.Intro to Unsupervised Learning/026. Autoencoders 101.mp4 22MB
- 002.Course intro/002. Course intro.mp4 22MB
- 007.Matrix derivatives/014. Other matrix derivatives.mp4 21MB
- 005.Stochastic methods for optimization/008. Stochastic gradient descent.mp4 21MB
- 004.Regularization in machine learning/007. Model regularization.mp4 20MB
- 012.Applications of CNNs/023. Learning new tasks with pre-trained CNNs.mp4 19MB
- 003.Linear model as the simplest neural network/005. Gradient descent.mp4 19MB
- 001.Specialization Promo/001. Welcome to AML specialization!.mp4 14MB
- 015.Word Embeddings/030. Word embeddings.srt 20KB
- 019.Applications of RNNs/039. Practical use cases for RNNs.srt 19KB
- 006.The simplest neural network MLP/010. Multilayer perceptron (MLP).srt 19KB
- 011.Modern CNNs/021. Training tips and tricks for deep CNNs.srt 18KB
- 018.Modern RNNs/038. Modern RNNs LSTM and GRU.srt 17KB
- 007.Matrix derivatives/013. Efficient MLP implementation.srt 17KB
- 003.Linear model as the simplest neural network/004. Linear classification.srt 16KB
- 010.Introduction to CNN/019. Motivation for convolutional layers.srt 16KB
- 016.Generative Adversarial Networks/033. Applications of adversarial approach.srt 16KB
- 016.Generative Adversarial Networks/032. Generative Adversarial Networks.srt 15KB
- 015.Word Embeddings/029. Natural language processing primer.srt 15KB
- 014.More Autoencoders/027. Autoencoder applications.srt 15KB
- 008.TensorFlow framework/015. What is TensorFlow.srt 15KB
- 009.Philosophy of deep learning/017. What Deep Learning is and is not.srt 14KB
- 008.TensorFlow framework/016. Our first model in TensorFlow.srt 14KB
- 018.Modern RNNs/037. Dealing with vanishing and exploding gradients.srt 14KB
- 005.Stochastic methods for optimization/009. Gradient descent extensions.srt 13KB
- 003.Linear model as the simplest neural network/003. Linear regression.srt 13KB
- 010.Introduction to CNN/020. Our first CNN architecture.srt 13KB
- 017.Introduction to RNN/035. Simple RNN and Backpropagation.srt 13KB
- 009.Philosophy of deep learning/018. Deep learning as a language.srt 12KB
- 006.The simplest neural network MLP/012. Backpropagation.srt 11KB
- 016.Generative Adversarial Networks/031. Generative models 101.srt 11KB
- 012.Applications of CNNs/024. A glimpse of other Computer Vision tasks.srt 11KB
- 014.More Autoencoders/028. Autoencoder applications image generation, data visualization & more.srt 11KB
- 017.Introduction to RNN/034. Motivation for recurrent layers.srt 11KB
- 018.Modern RNNs/036. The training of RNNs is not that easy.srt 10KB
- 006.The simplest neural network MLP/011. Chain rule.srt 10KB
- 004.Regularization in machine learning/006. Overfitting problem and model validation.srt 10KB
- 013.Intro to Unsupervised Learning/025. Unsupervised learning what it is and why bother.srt 10KB
- 011.Modern CNNs/022. Overview of modern CNN architectures.srt 10KB
- 002.Course intro/002. Course intro.srt 9KB
- 007.Matrix derivatives/014. Other matrix derivatives.srt 9KB
- 013.Intro to Unsupervised Learning/026. Autoencoders 101.srt 8KB
- 005.Stochastic methods for optimization/008. Stochastic gradient descent.srt 8KB
- 004.Regularization in machine learning/007. Model regularization.srt 7KB
- 003.Linear model as the simplest neural network/005. Gradient descent.srt 7KB
- 012.Applications of CNNs/023. Learning new tasks with pre-trained CNNs.srt 7KB
- 001.Specialization Promo/001. Welcome to AML specialization!.srt 5KB
- [FCS Forum].url 133B
- [FreeCourseSite.com].url 127B
- [CourseClub.NET].url 123B