02 -------------------------- Part 1 Data Preprocessing --------------------------/012 Categorical Data.mp4 53MB
24 Apriori/151 Apriori in R - Step 1.mp4 53MB
15 Kernel SVM/104 Kernel SVM in R.mp4 53MB
09 Random Forest Regression/068 Random Forest Regression in Python.mp4 53MB
05 Multiple Linear Regression/036 Multiple Linear Regression in Python - Step 1.mp4 52MB
29 --------------------- Part 7 Natural Language Processing ---------------------/188 Natural Language Processing in Python - Step 8.mp4 52MB
09 Random Forest Regression/069 Random Forest Regression in R.mp4 52MB
35 Linear Discriminant Analysis LDA/260 LDA in R.mp4 51MB
29 --------------------- Part 7 Natural Language Processing ---------------------/192 Natural Language Processing in R - Step 1.mp4 51MB
28 Thompson Sampling/177 Thompson Sampling in R - Step 1.mp4 51MB
02 -------------------------- Part 1 Data Preprocessing --------------------------/013 Splitting the Dataset into the Training set and Test set.mp4 51MB
05 Multiple Linear Regression/045 Multiple Linear Regression in R - Backward Elimination - HOMEWORK.mp4 51MB
16 Naive Bayes/105 Bayes Theorem.mp4 50MB
31 Artificial Neural Networks/225 ANN in R - Step 1.mp4 50MB
21 K-Means Clustering/131 K-Means Clustering in Python.mp4 50MB
16 Naive Bayes/111 Naive Bayes in R.mp4 50MB
04 Simple Linear Regression/028 Simple Linear Regression in R - Step 4.mp4 49MB
24 Apriori/154 Apriori in Python - Step 1.mp4 47MB
39 XGBoost/274 XGBoost in R.mp4 47MB
13 K-Nearest Neighbors K-NN/092 K-NN in Python.mp4 47MB
29 --------------------- Part 7 Natural Language Processing ---------------------/181 Natural Language Processing in Python - Step 1.mp4 46MB
35 Linear Discriminant Analysis LDA/259 LDA in Python.mp4 45MB
05 Multiple Linear Regression/043 Multiple Linear Regression in R - Step 2.mp4 45MB
02 -------------------------- Part 1 Data Preprocessing --------------------------/014 Feature Scaling.mp4 45MB
19 Evaluating Classification Models Performance/125 Conclusion of Part 3 - Classification.html 4KB
10 Evaluating Regression Models Performance/074 Conclusion of Part 2 - Regression.html 3KB
32 Convolutional Neural Networks/249 CNN in R.html 3KB
29 --------------------- Part 7 Natural Language Processing ---------------------/179 Welcome to Part 7 - Natural Language Processing.html 2KB
02 -------------------------- Part 1 Data Preprocessing --------------------------/010 For Python learners summary of Object-oriented programming classes objects.html 2KB
29 --------------------- Part 7 Natural Language Processing ---------------------/202 Homework Challenge.html 2KB
29 --------------------- Part 7 Natural Language Processing ---------------------/191 Homework Challenge.html 2KB
33 ----------------------- Part 9 Dimensionality Reduction -----------------------/250 Welcome to Part 9 - Dimensionality Reduction.html 2KB
01 Welcome to the course/005 BONUS Meet your instructors.html 1KB
37 --------------------- Part 10 Model Selection Boosting ---------------------/264 Welcome to Part 10 - Model Selection Boosting.html 1KB
30 ---------------------------- Part 8 Deep Learning ----------------------------/203 Welcome to Part 8 - Deep Learning.html 1KB
03 ------------------------------ Part 2 Regression ------------------------------/016 Welcome to Part 2 - Regression.html 1KB
26 ------------------------ Part 6 Reinforcement Learning ------------------------/160 Welcome to Part 6 - Reinforcement Learning.html 1KB
11 ---------------------------- Part 3 Classification ----------------------------/075 Welcome to Part 3 - Classification.html 1KB
20 ---------------------------- Part 4 Clustering ----------------------------/126 Welcome to Part 4 - Clustering.html 1004B
22 Hierarchical Clustering/147 Conclusion of Part 4 - Clustering.html 809B
23 ---------------------- Part 5 Association Rule Learning ----------------------/148 Welcome to Part 5 - Association Rule Learning.html 713B