[] Udemy - 2021 Python for Machine Learning & Data Science Masterclass 收录时间:2021-06-28 00:27:16 文件大小:6GB 下载次数:1 最近下载:2021-06-28 00:27:15 磁力链接: magnet:?xt=urn:btih:755ad0276149db0667bffc7b97f73ad3885d6afb 立即下载 复制链接 文件列表 5. Pandas/28. Pandas Project Exercise Solutions.mp4 182MB 8. Data Analysis and Visualization Capstone Project Exercise/4. Capstone Project Solutions - Part Three.mp4 144MB 5. Pandas/26. Pandas Pivot Tables.mp4 129MB 7. Seaborn Data Visualizations/2. Scatterplots with Seaborn.mp4 129MB 6. Matplotlib/11. Matplotlib Exercise Questions - Solutions.mp4 123MB 8. Data Analysis and Visualization Capstone Project Exercise/2. Capstone Project Solutions - Part One.mp4 117MB 5. Pandas/4. DataFrames - Part One - Creating a DataFrame.mp4 114MB 7. Seaborn Data Visualizations/8. Categorical Plots - Distributions within Categories - Coding with Seaborn.mp4 111MB 8. Data Analysis and Visualization Capstone Project Exercise/3. Capstone Project Solutions - Part Two.mp4 111MB 7. Seaborn Data Visualizations/14. Seaborn Plot Exercises Solutions.mp4 111MB 4. NumPy/2. NumPy Arrays.mp4 110MB 5. Pandas/23. Pandas Input and Output - HTML Tables.mp4 107MB 5. Pandas/15. GroupBy Operations - Part Two - MultiIndex.mp4 106MB 5. Pandas/25. Pandas Input and Output - SQL Databases.mp4 103MB 5. Pandas/21. Pandas - Time Methods for Date and Time Data.mp4 102MB 10. Linear Regression/24. L1 Regularization - Lasso Regression - Background and Implementation.mp4 100MB 1. Introduction to Course/3. Anaconda Python and Jupyter Install and Setup.mp4 99MB 5. Pandas/10. Pandas - Useful Methods - Apply on Multiple Columns.mp4 99MB 5. Pandas/13. Missing Data - Pandas Operations.mp4 98MB 5. Pandas/7. DataFrames - Part Four - Working with Rows.mp4 97MB 10. Linear Regression/23. L2 Regularization - Ridge Regression - Python Implementation.mp4 96MB 6. Matplotlib/6. Matplotlib - Subplots Functionality.mp4 96MB 10. Linear Regression/25. L1 and L2 Regularization - Elastic Net.mp4 93MB 8. Data Analysis and Visualization Capstone Project Exercise/1. Capstone Project Overview.mp4 93MB 5. Pandas/14. GroupBy Operations - Part One.mp4 93MB 10. Linear Regression/6. Python coding Simple Linear Regression.mp4 92MB 7. Seaborn Data Visualizations/11. Seaborn Grid Plots.mp4 92MB 5. Pandas/8. Pandas - Conditional Filtering.mp4 90MB 5. Pandas/6. DataFrames - Part Three - Working with Columns.mp4 89MB 10. Linear Regression/11. Linear Regression - Model Deployment and Coefficient Interpretation.mp4 88MB 10. Linear Regression/3. Linear Regression - Understanding Ordinary Least Squares.mp4 86MB 5. Pandas/11. Pandas - Useful Methods - Statistical Information and Sorting.mp4 86MB 10. Linear Regression/8. Linear Regression - Scikit-Learn Train Test Split.mp4 83MB 6. Matplotlib/8. Matplotlib Styling - Colors and Styles.mp4 81MB 7. Seaborn Data Visualizations/4. Distribution Plots - Part Two - Coding with Seaborn.mp4 78MB 5. Pandas/20. Pandas - Text Methods for String Data.mp4 76MB 10. Linear Regression/9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.mp4 74MB 5. Pandas/9. Pandas - Useful Methods - Apply on Single Column.mp4 73MB 10. Linear Regression/16. Polynomial Regression - Choosing Degree of Polynomial.mp4 73MB 9. Machine Learning Concepts Overview/4. Supervised Machine Learning Process.mp4 71MB 7. Seaborn Data Visualizations/12. Seaborn - Matrix Plots.mp4 71MB 7. Seaborn Data Visualizations/10. Seaborn - Comparison Plots - Coding with Seaborn.mp4 70MB 10. Linear Regression/5. Linear Regression - Gradient Descent.mp4 65MB 10. Linear Regression/20. Introduction to Cross Validation.mp4 63MB 7. Seaborn Data Visualizations/7. Categorical Plots - Distributions within Categories - Understanding Plot Types.mp4 61MB 10. Linear Regression/22. L2 Regularization - Ridge Regression Theory.mp4 61MB 10. Linear Regression/10. Linear Regression - Residual Plots.mp4 60MB 6. Matplotlib/4. Matplotlib - Implementing Figures and Axes.mp4 59MB 7. Seaborn Data Visualizations/6. Categorical Plots - Statistics within Categories - Coding with Seaborn.mp4 55MB 10. Linear Regression/2. Linear Regression - Algorithm History.mp4 55MB 10. Linear Regression/19. Feature Scaling.mp4 54MB 5. Pandas/5. DataFrames - Part Two - Basic Properties.mp4 54MB 6. Matplotlib/2. Matplotlib Basics.mp4 54MB 5. Pandas/17. Combining DataFrames - Inner Merge.mp4 54MB 5. Pandas/12. Missing Data - Overview.mp4 53MB 10. Linear Regression/13. Polynomial Regression - Creating Polynomial Features.mp4 53MB 6. Matplotlib/10. Matplotlib Exercise Questions Overview.mp4 51MB 5. Pandas/16. Combining DataFrames - Concatenation.mp4 51MB 7. Seaborn Data Visualizations/13. Seaborn Plot Exercises Overview.mp4 50MB 5. Pandas/22. Pandas Input and Output - CSV Files.mp4 50MB 1. Introduction to Course/4. Environment Setup.mp4 49MB 10. Linear Regression/14. Polynomial Regression - Training and Evaluation.mp4 49MB 4. NumPy/5. NumPy Operations.mp4 49MB 4. NumPy/7. Numpy Exercises - Solutions.mp4 49MB 4. NumPy/4. NumPy Indexing and Selection.mp4 46MB 10. Linear Regression/7. Overview of Scikit-Learn and Python.mp4 46MB 5. Pandas/3. Series - Part Two.mp4 45MB 9. Machine Learning Concepts Overview/2. Why Machine Learning.mp4 45MB 10. Linear Regression/12. Polynomial Regression - Theory and Motivation.mp4 44MB 10. Linear Regression/15. Bias Variance Trade-Off.mp4 43MB 5. Pandas/27. Pandas Project Exercise Overview.mp4 41MB 3. Machine Learning Pathway Overview/1. Machine Learning Pathway.mp4 41MB 6. Matplotlib/9. Advanced Matplotlib Commands (Optional).mp4 40MB 5. Pandas/19. Combining DataFrames - Outer Merge.mp4 40MB 10. Linear Regression/26. Linear Regression Project - Data Overview.mp4 39MB 9. Machine Learning Concepts Overview/3. Types of Machine Learning Algorithms.mp4 39MB 5. Pandas/2. Series - Part One.mp4 38MB 10. Linear Regression/4. Linear Regression - Cost Functions.mp4 36MB 5. Pandas/24. Pandas Input and Output - Excel Files.mp4 35MB 10. Linear Regression/21. Regularization Data Setup.mp4 34MB 6. Matplotlib/7. Matplotlib Styling - Legends.mp4 34MB 10. Linear Regression/18. Regularization Overview.mp4 33MB 7. Seaborn Data Visualizations/3. Distribution Plots - Part One - Understanding Plot Types.mp4 32MB 9. Machine Learning Concepts Overview/1. Introduction to Machine Learning Overview Section.mp4 30MB 2. OPTIONAL Python Crash Course/2. Python Crash Course - Part One.mp4 30MB 10. Linear Regression/17. Polynomial Regression - Model Deployment.mp4 29MB 5. Pandas/18. Combining DataFrames - Left and Right Merge.mp4 28MB 1. Introduction to Course/3.1 UNZIP_ME_FOR_NOTEBOOKS.zip 27MB 1. Introduction to Course/2.1 UNZIP_ME_FOR_NOTEBOOKS.zip 27MB 6. Matplotlib/3. Matplotlib - Understanding the Figure Object.mp4 26MB 2. OPTIONAL Python Crash Course/6. Python Crash Course - Exercise Solutions.mp4 25MB 1. Introduction to Course/2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.mp4 25MB 6. Matplotlib/5. Matplotlib - Figure Parameters.mp4 24MB 7. Seaborn Data Visualizations/9. Seaborn - Comparison Plots - Understanding the Plot Types.mp4 23MB 2. OPTIONAL Python Crash Course/4. Python Crash Course - Part Three.mp4 23MB 2. OPTIONAL Python Crash Course/3. Python Crash Course - Part Two.mp4 22MB 7. Seaborn Data Visualizations/5. Categorical Plots - Statistics within Categories - Understanding Plot Types.mp4 22MB 6. Matplotlib/1. Introduction to Matplotlib.mp4 22MB 5. Pandas/1. Introduction to Pandas.mp4 21MB 7. Seaborn Data Visualizations/1. Introduction to Seaborn.mp4 20MB 9. Machine Learning Concepts Overview/5. Companion Book - Introduction to Statistical Learning.mp4 19MB 4. NumPy/6. NumPy Exercises.mp4 12MB 4. NumPy/1. Introduction to NumPy.mp4 11MB 10. Linear Regression/1. Introduction to Linear Regression Section.mp4 9MB 2. OPTIONAL Python Crash Course/5. Python Crash Course - Exercise Questions.mp4 5MB 5. Pandas/28. Pandas Project Exercise Solutions.srt 39KB 5. Pandas/26. Pandas Pivot Tables.srt 32KB 4. NumPy/2. NumPy Arrays.srt 32KB 5. Pandas/21. Pandas - Time Methods for Date and Time Data.srt 32KB 8. Data Analysis and Visualization Capstone Project Exercise/4. Capstone Project Solutions - Part Three.srt 31KB 7. Seaborn Data Visualizations/2. Scatterplots with Seaborn.srt 30KB 5. Pandas/25. Pandas Input and Output - SQL Databases.srt 29KB 5. Pandas/4. DataFrames - Part One - Creating a DataFrame.srt 29KB 6. Matplotlib/6. Matplotlib - Subplots Functionality.srt 29KB 7. Seaborn Data Visualizations/8. Categorical Plots - Distributions within Categories - Coding with Seaborn.srt 28KB 10. Linear Regression/6. Python coding Simple Linear Regression.srt 28KB 5. Pandas/13. Missing Data - Pandas Operations.srt 27KB 5. Pandas/8. Pandas - Conditional Filtering.srt 27KB 8. Data Analysis and Visualization Capstone Project Exercise/2. Capstone Project Solutions - Part One.srt 27KB 10. Linear Regression/23. L2 Regularization - Ridge Regression - Python Implementation.srt 26KB 5. Pandas/10. Pandas - Useful Methods - Apply on Multiple Columns.srt 26KB 10. Linear Regression/25. L1 and L2 Regularization - Elastic Net.srt 26KB 10. Linear Regression/11. Linear Regression - Model Deployment and Coefficient Interpretation.srt 26KB 7. Seaborn Data Visualizations/4. Distribution Plots - Part Two - Coding with Seaborn.srt 25KB 2. OPTIONAL Python Crash Course/2. Python Crash Course - Part One.srt 25KB 6. Matplotlib/11. Matplotlib Exercise Questions - Solutions.srt 25KB 5. Pandas/20. Pandas - Text Methods for String Data.srt 24KB 10. Linear Regression/8. Linear Regression - Scikit-Learn Train Test Split.srt 24KB 8. Data Analysis and Visualization Capstone Project Exercise/3. Capstone Project Solutions - Part Two.srt 23KB 5. Pandas/11. Pandas - Useful Methods - Statistical Information and Sorting.srt 23KB 10. Linear Regression/9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.srt 23KB 10. Linear Regression/3. Linear Regression - Understanding Ordinary Least Squares.srt 23KB 10. Linear Regression/24. L1 Regularization - Lasso Regression - Background and Implementation.srt 22KB 7. Seaborn Data Visualizations/14. Seaborn Plot Exercises Solutions.srt 22KB 5. Pandas/23. Pandas Input and Output - HTML Tables.srt 22KB 1. Introduction to Course/3. Anaconda Python and Jupyter Install and Setup.srt 22KB 5. Pandas/14. GroupBy Operations - Part One.srt 21KB 7. Seaborn Data Visualizations/12. Seaborn - Matrix Plots.srt 21KB 5. Pandas/7. DataFrames - Part Four - Working with Rows.srt 21KB 6. Matplotlib/8. Matplotlib Styling - Colors and Styles.srt 21KB 6. Matplotlib/4. Matplotlib - Implementing Figures and Axes.srt 21KB 5. Pandas/15. GroupBy Operations - Part Two - MultiIndex.srt 21KB 10. Linear Regression/22. L2 Regularization - Ridge Regression Theory.srt 21KB 5. Pandas/6. DataFrames - Part Three - Working with Columns.srt 21KB 8. Data Analysis and Visualization Capstone Project Exercise/1. Capstone Project Overview.srt 21KB 7. Seaborn Data Visualizations/11. Seaborn Grid Plots.srt 20KB 5. Pandas/9. Pandas - Useful Methods - Apply on Single Column.srt 20KB 10. Linear Regression/10. Linear Regression - Residual Plots.srt 20KB 7. Seaborn Data Visualizations/7. Categorical Plots - Distributions within Categories - Understanding Plot Types.srt 20KB 10. Linear Regression/16. Polynomial Regression - Choosing Degree of Polynomial.srt 20KB 10. Linear Regression/20. Introduction to Cross Validation.srt 20KB 9. Machine Learning Concepts Overview/4. Supervised Machine Learning Process.srt 20KB 6. Matplotlib/2. Matplotlib Basics.srt 20KB 5. Pandas/17. Combining DataFrames - Inner Merge.srt 19KB 5. Pandas/12. Missing Data - Overview.srt 18KB 2. OPTIONAL Python Crash Course/3. Python Crash Course - Part Two.srt 18KB 10. Linear Regression/5. Linear Regression - Gradient Descent.srt 17KB 5. Pandas/22. Pandas Input and Output - CSV Files.srt 17KB 2. OPTIONAL Python Crash Course/4. Python Crash Course - Part Three.srt 17KB 10. Linear Regression/13. Polynomial Regression - Creating Polynomial Features.srt 16KB 4. NumPy/4. NumPy Indexing and Selection.srt 16KB 10. Linear Regression/15. Bias Variance Trade-Off.srt 16KB 3. Machine Learning Pathway Overview/1. Machine Learning Pathway.srt 16KB 7. Seaborn Data Visualizations/10. Seaborn - Comparison Plots - Coding with Seaborn.srt 16KB 5. Pandas/3. Series - Part Two.srt 15KB 5. Pandas/16. Combining DataFrames - Concatenation.srt 15KB 7. Seaborn Data Visualizations/3. Distribution Plots - Part One - Understanding Plot Types.srt 15KB 10. Linear Regression/19. Feature Scaling.srt 15KB 9. Machine Learning Concepts Overview/2. Why Machine Learning.srt 15KB 7. Seaborn Data Visualizations/6. Categorical Plots - Statistics within Categories - Coding with Seaborn.srt 15KB 5. Pandas/19. Combining DataFrames - Outer Merge.srt 15KB 1. Introduction to Course/4. Environment Setup.srt 14KB 10. Linear Regression/14. Polynomial Regression - Training and Evaluation.srt 14KB 2. OPTIONAL Python Crash Course/6. Python Crash Course - Exercise Solutions.srt 13KB 5. Pandas/2. Series - Part One.srt 13KB 5. Pandas/5. DataFrames - Part Two - Basic Properties.srt 13KB 10. Linear Regression/2. Linear Regression - Algorithm History.srt 13KB 10. Linear Regression/21. Regularization Data Setup.srt 12KB 10. Linear Regression/7. Overview of Scikit-Learn and Python.srt 12KB 4. NumPy/5. NumPy Operations.srt 12KB 9. Machine Learning Concepts Overview/3. Types of Machine Learning Algorithms.srt 12KB 6. Matplotlib/3. Matplotlib - Understanding the Figure Object.srt 12KB 10. Linear Regression/4. Linear Regression - Cost Functions.srt 11KB 7. Seaborn Data Visualizations/13. Seaborn Plot Exercises Overview.srt 11KB 10. Linear Regression/12. Polynomial Regression - Theory and Motivation.srt 11KB 5. Pandas/24. Pandas Input and Output - Excel Files.srt 11KB 4. NumPy/7. Numpy Exercises - Solutions.srt 11KB 6. Matplotlib/7. Matplotlib Styling - Legends.srt 10KB 10. Linear Regression/18. Regularization Overview.srt 10KB 5. Pandas/27. Pandas Project Exercise Overview.srt 10KB 6. Matplotlib/10. Matplotlib Exercise Questions Overview.srt 9KB 5. Pandas/18. Combining DataFrames - Left and Right Merge.srt 9KB 7. Seaborn Data Visualizations/5. Categorical Plots - Statistics within Categories - Understanding Plot Types.srt 9KB 7. Seaborn Data Visualizations/9. Seaborn - Comparison Plots - Understanding the Plot Types.srt 9KB 9. Machine Learning Concepts Overview/1. Introduction to Machine Learning Overview Section.srt 9KB 10. Linear Regression/17. Polynomial Regression - Model Deployment.srt 8KB 10. Linear Regression/26. Linear Regression Project - Data Overview.srt 8KB 6. Matplotlib/5. Matplotlib - Figure Parameters.srt 8KB 5. Pandas/1. Introduction to Pandas.srt 7KB 1. Introduction to Course/2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.srt 7KB 6. Matplotlib/1. Introduction to Matplotlib.srt 7KB 7. Seaborn Data Visualizations/1. Introduction to Seaborn.srt 7KB 6. Matplotlib/9. Advanced Matplotlib Commands (Optional).srt 6KB 9. Machine Learning Concepts Overview/5. Companion Book - Introduction to Statistical Learning.srt 5KB 4. NumPy/1. Introduction to NumPy.srt 3KB 10. Linear Regression/1. Introduction to Linear Regression Section.srt 3KB 2. OPTIONAL Python Crash Course/5. Python Crash Course - Exercise Questions.srt 3KB 4. NumPy/6. NumPy Exercises.srt 2KB 1. Introduction to Course/1. EARLY BIRD INFO.html 550B 2. OPTIONAL Python Crash Course/1. OPTIONAL Python Crash Course.html 472B 1. Introduction to Course/4.2 requirements.txt 221B 4. NumPy/3. Coding Exercise Check-in Creating NumPy Arrays.html 163B 1. Introduction to Course/4.1 Backup Google Link for requirements.txt file.html 143B [FreeCourseSite.com].url 127B