Deep Learning - Artificial Neural Networks with Tensorflow
- 收录时间:2025-03-12 21:59:44
- 文件大小:1GB
- 下载次数:1
- 最近下载:2025-03-12 21:59:44
- 磁力链接:
-
文件列表
- Chapter 3 Feedforward Artificial Neural Networks/004. Activation Functions.mp4 62MB
- Chapter 3 Feedforward Artificial Neural Networks/009. ANN for Regression.mp4 56MB
- Chapter 2 Machine Learning and Neurons/001. What Is Machine Learning.mp4 54MB
- Chapter 3 Feedforward Artificial Neural Networks/006. How to Represent Images.mp4 50MB
- Chapter 2 Machine Learning and Neurons/002. Code Preparation (Classification Theory).mp4 48MB
- Chapter 2 Machine Learning and Neurons/005. Regression Notebook.mp4 48MB
- Chapter 2 Machine Learning and Neurons/003. Classification Notebook.mp4 45MB
- Chapter 3 Feedforward Artificial Neural Networks/007. Code Preparation (Artificial Neural Networks).mp4 42MB
- Chapter 5 In-Depth Gradient Descent/005. Adam Optimization (Part 1).mp4 42MB
- Chapter 5 In-Depth Gradient Descent/006. Adam Optimization (Part 2).mp4 40MB
- Chapter 3 Feedforward Artificial Neural Networks/008. ANN for Image Classification.mp4 40MB
- Chapter 3 Feedforward Artificial Neural Networks/003. The Geometrical Picture.mp4 39MB
- Chapter 2 Machine Learning and Neurons/007. How Does a Model Learn .mp4 39MB
- Chapter 2 Machine Learning and Neurons/006. The Neuron.mp4 34MB
- Chapter 3 Feedforward Artificial Neural Networks/005. Multiclass Classification.mp4 34MB
- Chapter 3 Feedforward Artificial Neural Networks/002. Forward Propagation.mp4 34MB
- Chapter 5 In-Depth Gradient Descent/004. Variable and Adaptive Learning Rates.mp4 33MB
- Chapter 4 In-Depth Loss Functions/001. Mean Squared Error.mp4 30MB
- Chapter 2 Machine Learning and Neurons/008. Making Predictions.mp4 30MB
- Chapter 5 In-Depth Gradient Descent/003. Momentum.mp4 29MB
- Chapter 5 In-Depth Gradient Descent/001. Gradient Descent.mp4 29MB
- Chapter 2 Machine Learning and Neurons/009. Saving and Loading a Model.mp4 28MB
- Chapter 4 In-Depth Loss Functions/003. Categorical Cross Entropy.mp4 27MB
- Chapter 3 Feedforward Artificial Neural Networks/001. Artificial Neural Networks Section Introduction.mp4 27MB
- Chapter 3 Feedforward Artificial Neural Networks/010. How to Choose Hyperparameters.mp4 24MB
- Chapter 2 Machine Learning and Neurons/004. Code Preparation (Regression Theory).mp4 24MB
- Chapter 1 Welcome/002. Outline.mp4 22MB
- Chapter 5 In-Depth Gradient Descent/002. Stochastic Gradient Descent.mp4 21MB
- Chapter 4 In-Depth Loss Functions/002. Binary Cross Entropy.mp4 20MB
- Chapter 1 Welcome/001. Introduction.mp4 19MB
- Chapter 2 Machine Learning and Neurons/010. Why Keras.mp4 18MB
- Chapter 2 Machine Learning and Neurons/011. Suggestion Box.mp4 17MB
- Chapter 3 Feedforward Artificial Neural Networks/004. Activation Functions.en.srt 24KB
- Chapter 2 Machine Learning and Neurons/002. Code Preparation (Classification Theory).en.srt 22KB
- Chapter 2 Machine Learning and Neurons/001. What Is Machine Learning.en.srt 20KB
- Chapter 5 In-Depth Gradient Descent/005. Adam Optimization (Part 1).en.srt 18KB
- Chapter 3 Feedforward Artificial Neural Networks/007. Code Preparation (Artificial Neural Networks).en.srt 17KB
- Chapter 3 Feedforward Artificial Neural Networks/006. How to Represent Images.en.srt 17KB
- Chapter 5 In-Depth Gradient Descent/004. Variable and Adaptive Learning Rates.en.srt 16KB
- Chapter 5 In-Depth Gradient Descent/006. Adam Optimization (Part 2).en.srt 15KB
- Chapter 2 Machine Learning and Neurons/007. How Does a Model Learn .en.srt 15KB
- Chapter 3 Feedforward Artificial Neural Networks/009. ANN for Regression.en.srt 14KB
- Chapter 2 Machine Learning and Neurons/006. The Neuron.en.srt 14KB
- Chapter 2 Machine Learning and Neurons/005. Regression Notebook.en.srt 13KB
- Chapter 3 Feedforward Artificial Neural Networks/002. Forward Propagation.en.srt 13KB
- Chapter 3 Feedforward Artificial Neural Networks/003. The Geometrical Picture.en.srt 13KB
- Chapter 4 In-Depth Loss Functions/001. Mean Squared Error.en.srt 12KB
- Chapter 3 Feedforward Artificial Neural Networks/005. Multiclass Classification.en.srt 12KB
- Chapter 3 Feedforward Artificial Neural Networks/008. ANN for Image Classification.en.srt 11KB
- Chapter 5 In-Depth Gradient Descent/001. Gradient Descent.en.srt 10KB
- Chapter 4 In-Depth Loss Functions/003. Categorical Cross Entropy.en.srt 10KB
- Chapter 2 Machine Learning and Neurons/003. Classification Notebook.en.srt 10KB
- Chapter 2 Machine Learning and Neurons/004. Code Preparation (Regression Theory).en.srt 10KB
- Chapter 2 Machine Learning and Neurons/008. Making Predictions.en.srt 9KB
- Chapter 3 Feedforward Artificial Neural Networks/010. How to Choose Hyperparameters.en.srt 9KB
- Chapter 3 Feedforward Artificial Neural Networks/001. Artificial Neural Networks Section Introduction.en.srt 8KB
- Chapter 5 In-Depth Gradient Descent/003. Momentum.en.srt 8KB
- Chapter 4 In-Depth Loss Functions/002. Binary Cross Entropy.en.srt 8KB
- Chapter 1 Welcome/002. Outline.en.srt 8KB
- Chapter 2 Machine Learning and Neurons/010. Why Keras.en.srt 6KB
- Chapter 5 In-Depth Gradient Descent/002. Stochastic Gradient Descent.en.srt 6KB
- Chapter 2 Machine Learning and Neurons/009. Saving and Loading a Model.en.srt 5KB
- Chapter 2 Machine Learning and Neurons/011. Suggestion Box.en.srt 5KB
- Chapter 1 Welcome/001. Introduction.en.srt 3KB