589689.xyz

[ ] Udemy - Kaggle Master with Heart Attack Prediction Kaggle Project

  • 收录时间:2022-05-31 22:16:25
  • 文件大小:4GB
  • 下载次数:1
  • 最近下载:2022-05-31 22:16:25
  • 磁力链接:

文件列表

  1. ~Get Your Files Here !/2. Competition Section on Kaggle/2. Competitions on Kaggle Lesson 2.mp4 179MB
  2. ~Get Your Files Here !/2. Competition Section on Kaggle/1. Competitions on Kaggle Lesson 1.mp4 175MB
  3. ~Get Your Files Here !/4. Code Section on Kaggle/3. Examining the Code Section in Kaggle Lesson 3.mp4 148MB
  4. ~Get Your Files Here !/3. Dataset Section on Kaggle/1. Datasets on Kaggle.mp4 123MB
  5. ~Get Your Files Here !/1. First Contact with Kaggle/1. What is Kaggle.mp4 122MB
  6. ~Get Your Files Here !/8. Introduction to Machine Learning with Real Hearth Attack Prediction Project/6. Recognizing Variables In Dataset.mp4 115MB
  7. ~Get Your Files Here !/1. First Contact with Kaggle/4. Getting to Know the Kaggle Homepage.mp4 112MB
  8. ~Get Your Files Here !/8. Introduction to Machine Learning with Real Hearth Attack Prediction Project/1. First Step to the Hearth Attack Prediction Project.mp4 109MB
  9. ~Get Your Files Here !/6. Other Most Used Options on Kaggle/2. Ranking Among Users on Kaggle.mp4 99MB
  10. ~Get Your Files Here !/4. Code Section on Kaggle/2. Examining the Code Section in Kaggle Lesson 2.mp4 98MB
  11. ~Get Your Files Here !/8. Introduction to Machine Learning with Real Hearth Attack Prediction Project/3. Notebook Design to be Used in the Project.mp4 98MB
  12. ~Get Your Files Here !/10. Preparation For Exploratory Data Analysis (EDA) in Data Science/4. Examining Statistics of Variables.mp4 84MB
  13. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp4 82MB
  14. ~Get Your Files Here !/11. Exploratory Data Analysis (EDA) - Uni-variate Analysis/4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp4 78MB
  15. ~Get Your Files Here !/7. Details on Kaggle/1. User Page Review on Kaggle.mp4 75MB
  16. ~Get Your Files Here !/11. Exploratory Data Analysis (EDA) - Uni-variate Analysis/1. Numeric Variables (Analysis with Distplot) Lesson 1.mp4 75MB
  17. ~Get Your Files Here !/4. Code Section on Kaggle/1. Examining the Code Section in Kaggle Lesson 1.mp4 73MB
  18. ~Get Your Files Here !/8. Introduction to Machine Learning with Real Hearth Attack Prediction Project/5. Examining the Project Topic.mp4 72MB
  19. ~Get Your Files Here !/7. Details on Kaggle/2. Treasure in The Kaggle.mp4 70MB
  20. ~Get Your Files Here !/11. Exploratory Data Analysis (EDA) - Uni-variate Analysis/3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp4 69MB
  21. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp4 64MB
  22. ~Get Your Files Here !/9. First Organization/1. Required Python Libraries.mp4 59MB
  23. ~Get Your Files Here !/9. First Organization/3. Initial analysis on the dataset.mp4 59MB
  24. ~Get Your Files Here !/7. Details on Kaggle/4. What Should Be Done to Achieve Success in Kaggle.mp4 55MB
  25. ~Get Your Files Here !/14. Modelling for Machine Learning/4. Hyperparameter Optimization (with GridSearchCV).mp4 55MB
  26. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.mp4 52MB
  27. ~Get Your Files Here !/11. Exploratory Data Analysis (EDA) - Uni-variate Analysis/5. Examining the Missing Data According to the Analysis Result.mp4 50MB
  28. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/8. Creating a New DataFrame with the Melt() Function.mp4 49MB
  29. ~Get Your Files Here !/14. Modelling for Machine Learning/8. Hyperparameter Optimization (with GridSearchCV).mp4 49MB
  30. ~Get Your Files Here !/6. Other Most Used Options on Kaggle/1. Courses in Kaggle.mp4 48MB
  31. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.mp4 45MB
  32. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.mp4 44MB
  33. ~Get Your Files Here !/10. Preparation For Exploratory Data Analysis (EDA) in Data Science/1. Examining Missing Values.mp4 42MB
  34. ~Get Your Files Here !/10. Preparation For Exploratory Data Analysis (EDA) in Data Science/2. Examining Unique Values.mp4 41MB
  35. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/4. Dealing with Outliers – Trtbps Variable Lesson 2.mp4 41MB
  36. ~Get Your Files Here !/1. First Contact with Kaggle/3. Registering on Kaggle and Member Login Procedures.mp4 41MB
  37. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/3. Dealing with Outliers – Trtbps Variable Lesson 1.mp4 40MB
  38. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.mp4 39MB
  39. ~Get Your Files Here !/6. Other Most Used Options on Kaggle/3. Blog and Documentation Sections.mp4 39MB
  40. ~Get Your Files Here !/14. Modelling for Machine Learning/3. Roc Curve and Area Under Curve (AUC).mp4 39MB
  41. ~Get Your Files Here !/5. Discussion Section on Kaggle/1. What is Discussion on Kaggle.mp4 38MB
  42. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.mp4 36MB
  43. ~Get Your Files Here !/7. Details on Kaggle/3. Publishing Notebooks on Kaggle.mp4 35MB
  44. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/5. Dealing with Outliers – Thalach Variable.mp4 34MB
  45. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/13. Relationships between variables (Analysis with Heatmap) Lesson 1.mp4 34MB
  46. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/6. Dealing with Outliers – Oldpeak Variable.mp4 33MB
  47. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.mp4 33MB
  48. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.mp4 33MB
  49. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/2. Visualizing Outliers.mp4 33MB
  50. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/7. Feature Scaling with the Robust Scaler Method.mp4 33MB
  51. ~Get Your Files Here !/14. Modelling for Machine Learning/2. Cross Validation.mp4 28MB
  52. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/11. Separating Data into Test and Training Set.mp4 28MB
  53. ~Get Your Files Here !/14. Modelling for Machine Learning/7. Random Forest Algorithm.mp4 28MB
  54. ~Get Your Files Here !/14. Modelling for Machine Learning/1. Logistic Regression.mp4 27MB
  55. ~Get Your Files Here !/15. Conclusion/1. Project Conclusion and Sharing.mp4 27MB
  56. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.mp4 27MB
  57. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/1. Dropping Columns with Low Correlation.mp4 25MB
  58. ~Get Your Files Here !/14. Modelling for Machine Learning/5. Decision Tree Algorithm.mp4 24MB
  59. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/7. Determining Distributions of Numeric Variables.mp4 23MB
  60. ~Get Your Files Here !/14. Modelling for Machine Learning/6. Support Vector Machine Algorithm.mp4 23MB
  61. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/9. Applying One Hot Encoding Method to Categorical Variables.mp4 22MB
  62. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.mp4 22MB
  63. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/8. Transformation Operations on Unsymmetrical Data.mp4 22MB
  64. ~Get Your Files Here !/11. Exploratory Data Analysis (EDA) - Uni-variate Analysis/2. Numeric Variables (Analysis with Distplot) Lesson 2.mp4 18MB
  65. ~Get Your Files Here !/10. Preparation For Exploratory Data Analysis (EDA) in Data Science/3. Separating variables (Numeric or Categorical).mp4 15MB
  66. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.mp4 11MB
  67. ~Get Your Files Here !/9. First Organization/2. Loading the Statistics Dataset in Data Science.mp4 9MB
  68. ~Get Your Files Here !/2. Competition Section on Kaggle/1. Competitions on Kaggle Lesson 1.srt 31KB
  69. ~Get Your Files Here !/2. Competition Section on Kaggle/2. Competitions on Kaggle Lesson 2.srt 30KB
  70. ~Get Your Files Here !/4. Code Section on Kaggle/3. Examining the Code Section in Kaggle Lesson 3.srt 28KB
  71. ~Get Your Files Here !/1. First Contact with Kaggle/4. Getting to Know the Kaggle Homepage.srt 25KB
  72. ~Get Your Files Here !/10. Preparation For Exploratory Data Analysis (EDA) in Data Science/4. Examining Statistics of Variables.srt 25KB
  73. ~Get Your Files Here !/8. Introduction to Machine Learning with Real Hearth Attack Prediction Project/6. Recognizing Variables In Dataset.srt 24KB
  74. ~Get Your Files Here !/1. First Contact with Kaggle/1. What is Kaggle.srt 23KB
  75. ~Get Your Files Here !/3. Dataset Section on Kaggle/1. Datasets on Kaggle.srt 22KB
  76. ~Get Your Files Here !/8. Introduction to Machine Learning with Real Hearth Attack Prediction Project/1. First Step to the Hearth Attack Prediction Project.srt 21KB
  77. ~Get Your Files Here !/4. Code Section on Kaggle/2. Examining the Code Section in Kaggle Lesson 2.srt 21KB
  78. ~Get Your Files Here !/11. Exploratory Data Analysis (EDA) - Uni-variate Analysis/4. Categoric Variables (Analysis with Pie Chart) Lesson 2.srt 21KB
  79. ~Get Your Files Here !/8. Introduction to Machine Learning with Real Hearth Attack Prediction Project/3. Notebook Design to be Used in the Project.srt 20KB
  80. ~Get Your Files Here !/11. Exploratory Data Analysis (EDA) - Uni-variate Analysis/1. Numeric Variables (Analysis with Distplot) Lesson 1.srt 20KB
  81. ~Get Your Files Here !/6. Other Most Used Options on Kaggle/2. Ranking Among Users on Kaggle.srt 20KB
  82. ~Get Your Files Here !/11. Exploratory Data Analysis (EDA) - Uni-variate Analysis/3. Categoric Variables (Analysis with Pie Chart) Lesson 1.srt 20KB
  83. ~Get Your Files Here !/9. First Organization/3. Initial analysis on the dataset.srt 18KB
  84. ~Get Your Files Here !/4. Code Section on Kaggle/1. Examining the Code Section in Kaggle Lesson 1.srt 18KB
  85. ~Get Your Files Here !/14. Modelling for Machine Learning/4. Hyperparameter Optimization (with GridSearchCV).srt 17KB
  86. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.srt 17KB
  87. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/14. Relationships between variables (Analysis with Heatmap) Lesson 2.srt 16KB
  88. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.srt 15KB
  89. ~Get Your Files Here !/8. Introduction to Machine Learning with Real Hearth Attack Prediction Project/2. FAQ about Machine Learning, Data Science.html 15KB
  90. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/4. Dealing with Outliers – Trtbps Variable Lesson 2.srt 15KB
  91. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/8. Creating a New DataFrame with the Melt() Function.srt 15KB
  92. ~Get Your Files Here !/14. Modelling for Machine Learning/8. Hyperparameter Optimization (with GridSearchCV).srt 14KB
  93. ~Get Your Files Here !/8. Introduction to Machine Learning with Real Hearth Attack Prediction Project/5. Examining the Project Topic.srt 14KB
  94. ~Get Your Files Here !/11. Exploratory Data Analysis (EDA) - Uni-variate Analysis/5. Examining the Missing Data According to the Analysis Result.srt 14KB
  95. ~Get Your Files Here !/7. Details on Kaggle/1. User Page Review on Kaggle.srt 14KB
  96. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/3. Dealing with Outliers – Trtbps Variable Lesson 1.srt 14KB
  97. ~Get Your Files Here !/10. Preparation For Exploratory Data Analysis (EDA) in Data Science/1. Examining Missing Values.srt 13KB
  98. ~Get Your Files Here !/10. Preparation For Exploratory Data Analysis (EDA) in Data Science/2. Examining Unique Values.srt 13KB
  99. ~Get Your Files Here !/9. First Organization/1. Required Python Libraries.srt 13KB
  100. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/2. Visualizing Outliers.srt 12KB
  101. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/7. Feature Scaling with the Robust Scaler Method.srt 12KB
  102. ~Get Your Files Here !/7. Details on Kaggle/4. What Should Be Done to Achieve Success in Kaggle.srt 12KB
  103. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.srt 11KB
  104. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/5. Dealing with Outliers – Thalach Variable.srt 11KB
  105. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/6. Dealing with Outliers – Oldpeak Variable.srt 11KB
  106. ~Get Your Files Here !/1. First Contact with Kaggle/2. FAQ about Kaggle.html 11KB
  107. ~Get Your Files Here !/7. Details on Kaggle/2. Treasure in The Kaggle.srt 11KB
  108. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.srt 10KB
  109. ~Get Your Files Here !/14. Modelling for Machine Learning/3. Roc Curve and Area Under Curve (AUC).srt 10KB
  110. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.srt 10KB
  111. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.srt 10KB
  112. ~Get Your Files Here !/1. First Contact with Kaggle/3. Registering on Kaggle and Member Login Procedures.srt 9KB
  113. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/11. Separating Data into Test and Training Set.srt 9KB
  114. ~Get Your Files Here !/14. Modelling for Machine Learning/1. Logistic Regression.srt 9KB
  115. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.srt 9KB
  116. ~Get Your Files Here !/6. Other Most Used Options on Kaggle/1. Courses in Kaggle.srt 9KB
  117. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/13. Relationships between variables (Analysis with Heatmap) Lesson 1.srt 9KB
  118. ~Get Your Files Here !/14. Modelling for Machine Learning/7. Random Forest Algorithm.srt 8KB
  119. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.srt 8KB
  120. ~Get Your Files Here !/5. Discussion Section on Kaggle/1. What is Discussion on Kaggle.srt 8KB
  121. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/9. Applying One Hot Encoding Method to Categorical Variables.srt 8KB
  122. ~Get Your Files Here !/14. Modelling for Machine Learning/2. Cross Validation.srt 8KB
  123. ~Get Your Files Here !/14. Modelling for Machine Learning/5. Decision Tree Algorithm.srt 7KB
  124. ~Get Your Files Here !/7. Details on Kaggle/3. Publishing Notebooks on Kaggle.srt 7KB
  125. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.srt 7KB
  126. ~Get Your Files Here !/14. Modelling for Machine Learning/6. Support Vector Machine Algorithm.srt 7KB
  127. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/7. Determining Distributions of Numeric Variables.srt 7KB
  128. ~Get Your Files Here !/6. Other Most Used Options on Kaggle/3. Blog and Documentation Sections.srt 6KB
  129. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/8. Transformation Operations on Unsymmetrical Data.srt 6KB
  130. ~Get Your Files Here !/11. Exploratory Data Analysis (EDA) - Uni-variate Analysis/2. Numeric Variables (Analysis with Distplot) Lesson 2.srt 5KB
  131. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/1. Dropping Columns with Low Correlation.srt 5KB
  132. ~Get Your Files Here !/12. Exploratory Data Analysis (EDA) - Bi-variate Analysis/3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.srt 5KB
  133. ~Get Your Files Here !/15. Conclusion/1. Project Conclusion and Sharing.srt 5KB
  134. ~Get Your Files Here !/10. Preparation For Exploratory Data Analysis (EDA) in Data Science/3. Separating variables (Numeric or Categorical).srt 5KB
  135. ~Get Your Files Here !/13. Preparation for Modelling in Machine Learning/10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.srt 3KB
  136. ~Get Your Files Here !/9. First Organization/2. Loading the Statistics Dataset in Data Science.srt 3KB
  137. ~Get Your Files Here !/Bonus Resources.txt 386B
  138. ~Get Your Files Here !/16. Extra/1. Kaggle Masterclass with Hearth Attack Prediction Project.html 266B
  139. Get Bonus Downloads Here.url 183B
  140. ~Get Your Files Here !/8. Introduction to Machine Learning with Real Hearth Attack Prediction Project/4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html 108B