[] Udemy - Deep Learning A-Z™ Hands-On Artificial Neural Networks 收录时间:2021-02-21 04:07:13 文件大小:5GB 下载次数:1 最近下载:2021-02-21 04:07:13 磁力链接: magnet:?xt=urn:btih:8ebe89a440306d6d38c1851617ec5b6de82b798d 立即下载 复制链接 文件列表 7. Building a CNN/1.1 Section 40 - Convolutional Neural Networks (CNN).zip 224MB 7. Building a CNN/8. Building a CNN - FINAL DEMO!.mp4 153MB 25. Logistic Regression Implementation/8. Logistic Regression - Step 7.mp4 119MB 7. Building a CNN/4. Building a CNN - Step 3.mp4 119MB 4. Building an ANN/5. Building an ANN - Step 2.mp4 111MB 7. Building a CNN/3. Building a CNN - Step 2.mp4 107MB 24. Data Preprocessing Template/8. Data Preprocessing - Step 7.mp4 102MB 4. Building an ANN/8. Building an ANN - Step 5.mp4 101MB 7. Building a CNN/6. Building a CNN - Step 5.mp4 98MB 24. Data Preprocessing Template/6. Data Preprocessing - Step 5.mp4 89MB 25. Logistic Regression Implementation/3. Logistic Regression - Step 2.mp4 85MB 4. Building an ANN/6. Building an ANN - Step 3.mp4 75MB 24. Data Preprocessing Template/4. Data Preprocessing - Step 3.srt 72MB 24. Data Preprocessing Template/4. Data Preprocessing - Step 3.mp4 72MB 7. Building a CNN/2. Building a CNN - Step 1.mp4 71MB 24. Data Preprocessing Template/5. Data Preprocessing - Step 4.mp4 69MB 24. Data Preprocessing Template/7. Data Preprocessing - Step 6.mp4 68MB 4. Building an ANN/3. Building an ANN - Step 1.mp4 66MB 4. Building an ANN/7. Building an ANN - Step 4.mp4 65MB 18. Building a Boltzmann Machine/8. Building a Boltzmann Machine - Step 4.mp4 65MB 13. SOMs Intuition/8. Reading an Advanced SOM.mp4 62MB 18. Building a Boltzmann Machine/17. Building a Boltzmann Machine - Step 13.mp4 59MB 24. Data Preprocessing Template/2. Data Preprocessing - Step 1.mp4 54MB 18. Building a Boltzmann Machine/18. Building a Boltzmann Machine - Step 14.mp4 54MB 25. Logistic Regression Implementation/7. Logistic Regression - Step 6.mp4 53MB 9. RNN Intuition/6. Practical intuition.mp4 53MB 21. Building an AutoEncoder/17. THANK YOU bonus video.mp4 52MB 21. Building an AutoEncoder/11. Building an AutoEncoder - Step 6.mp4 52MB 6. CNN Intuition/8. Step 4 - Full Connection.srt 51MB 21. Building an AutoEncoder/9. Building an AutoEncoder - Step 4.mp4 50MB 15. Mega Case Study/4. Mega Case Study - Step 3.mp4 49MB 9. RNN Intuition/5. LSTMs.mp4 46MB 25. Logistic Regression Implementation/5. Logistic Regression - Step 4.mp4 45MB 25. Logistic Regression Implementation/2. Logistic Regression - Step 1.mp4 45MB 25. Logistic Regression Implementation/4. Logistic Regression - Step 3.mp4 43MB 6. CNN Intuition/8. Step 4 - Full Connection.mp4 43MB 18. Building a Boltzmann Machine/16. Building a Boltzmann Machine - Step 12.srt 42MB 18. Building a Boltzmann Machine/16. Building a Boltzmann Machine - Step 12.mp4 42MB 6. CNN Intuition/6. Step 2 - Pooling.mp4 40MB 7. Building a CNN/5. Building a CNN - Step 4.mp4 40MB 10. Building a RNN/14. Building a RNN - Step 13.mp4 40MB 18. Building a Boltzmann Machine/12. Building a Boltzmann Machine - Step 8.mp4 39MB 17. Boltzmann Machine Intuition/4. Restricted Boltzmann Machine.mp4 39MB 9. RNN Intuition/3. The idea behind Recurrent Neural Networks.mp4 37MB 10. Building a RNN/5. Building a RNN - Step 4.mp4 37MB 21. Building an AutoEncoder/5. Building an AutoEncoder - Step 1.mp4 37MB 14. Building a SOM/5. Building a SOM - Step 3.mp4 36MB 18. Building a Boltzmann Machine/3. Building a Boltzmann Machine - Introduction.mp4 34MB 21. Building an AutoEncoder/13. Building an AutoEncoder - Step 8.mp4 34MB 21. Building an AutoEncoder/12. Building an AutoEncoder - Step 7.mp4 34MB 6. CNN Intuition/10. Softmax & Cross-Entropy.mp4 33MB 18. Building a Boltzmann Machine/14. Building a Boltzmann Machine - Step 10.mp4 33MB 17. Boltzmann Machine Intuition/1. Boltzmann Machine.mp4 32MB 21. Building an AutoEncoder/14. Building an AutoEncoder - Step 9.mp4 32MB 1. Welcome to the course/1. What is Deep Learning.mp4 31MB 18. Building a Boltzmann Machine/11. Building a Boltzmann Machine - Step 7.mp4 31MB 13. SOMs Intuition/5. How do Self-Organizing Maps Learn (Part 1).mp4 31MB 6. CNN Intuition/4. Step 1 - Convolution Operation.mp4 31MB 15. Mega Case Study/5. Mega Case Study - Step 4.mp4 31MB 14. Building a SOM/3. Building a SOM - Step 1.mp4 31MB 25. Logistic Regression Implementation/6. Logistic Regression - Step 5.mp4 31MB 18. Building a Boltzmann Machine/5. Building a Boltzmann Machine - Step 1.mp4 30MB 18. Building a Boltzmann Machine/6. Building a Boltzmann Machine - Step 2.mp4 30MB 3. ANN Intuition/3. The Neuron.mp4 30MB 17. Boltzmann Machine Intuition/5. Contrastive Divergence.mp4 30MB 6. CNN Intuition/3. What are convolutional neural networks.mp4 30MB 10. Building a RNN/12. Building a RNN - Step 11.mp4 29MB 23. Regression & Classification Intuition/5. Logistic Regression Intuition.mp4 29MB 9. RNN Intuition/4. The Vanishing Gradient Problem.mp4 29MB 14. Building a SOM/6. Building a SOM - Step 4.mp4 29MB 21. Building an AutoEncoder/16. Building an AutoEncoder - Step 11.mp4 28MB 20. AutoEncoders Intuition/1. Auto Encoders.mp4 28MB 21. Building an AutoEncoder/6. Building an AutoEncoder - Step 2.mp4 28MB 17. Boltzmann Machine Intuition/3. Editing Wikipedia - Our Contribution to the World.mp4 27MB 3. ANN Intuition/6. How do Neural Networks learn.mp4 27MB 10. Building a RNN/6. Building a RNN - Step 5.mp4 26MB 18. Building a Boltzmann Machine/7. Building a Boltzmann Machine - Step 3.mp4 26MB 18. Building a Boltzmann Machine/10. Building a Boltzmann Machine - Step 6.mp4 25MB 13. SOMs Intuition/4. K-Means Clustering (Refresher).mp4 25MB 3. ANN Intuition/5. How do Neural Networks work.mp4 24MB 18. Building a Boltzmann Machine/15. Building a Boltzmann Machine - Step 11.mp4 22MB 13. SOMs Intuition/10. EXTRA K-means Clustering (part 3).mp4 22MB 10. Building a RNN/16. Building a RNN - Step 15.mp4 22MB 10. Building a RNN/15. Building a RNN - Step 14.mp4 22MB 10. Building a RNN/8. Building a RNN - Step 7.mp4 21MB 1. Welcome to the course/2. Updates on Udemy Reviews.mp4 20MB 18. Building a Boltzmann Machine/13. Building a Boltzmann Machine - Step 9.mp4 20MB 21. Building an AutoEncoder/7. Building an AutoEncoder - Step 3.mp4 20MB 13. SOMs Intuition/2. How do Self-Organizing Maps Work.mp4 20MB 14. Building a SOM/4. Building a SOM - Step 2.mp4 19MB 13. SOMs Intuition/6. How do Self-Organizing Maps Learn (Part 2).mp4 19MB 13. SOMs Intuition/7. Live SOM example.mp4 19MB 3. ANN Intuition/7. Gradient Descent.mp4 19MB 17. Boltzmann Machine Intuition/2. Energy-Based Models (EBM).mp4 18MB 3. ANN Intuition/8. Stochastic Gradient Descent.mp4 17MB 4. Building an ANN/1. Business Problem Description.mp4 16MB 24. Data Preprocessing Template/3. Data Preprocessing - Step 2.mp4 16MB 10. Building a RNN/4. Building a RNN - Step 3.mp4 16MB 10. Building a RNN/3. Building a RNN - Step 2.mp4 16MB 18. Building a Boltzmann Machine/9. Building a Boltzmann Machine - Step 5.mp4 15MB 3. ANN Intuition/4. The Activation Function.mp4 15MB 6. CNN Intuition/5. Step 1(b) - ReLU Layer.mp4 14MB 20. AutoEncoders Intuition/5. Sparse Autoencoders.srt 14MB 20. AutoEncoders Intuition/5. Sparse Autoencoders.mp4 14MB 10. Building a RNN/2. Building a RNN - Step 1.mp4 14MB 20. AutoEncoders Intuition/3. Training an Auto Encoder.mp4 14MB 10. Building a RNN/13. Building a RNN - Step 12.mp4 13MB 10. Building a RNN/9. Building a RNN - Step 8.mp4 13MB 15. Mega Case Study/3. Mega Case Study - Step 2.mp4 13MB 17. Boltzmann Machine Intuition/6. Deep Belief Networks.mp4 13MB 13. SOMs Intuition/9. EXTRA K-means Clustering (part 2).mp4 12MB 21. Building an AutoEncoder/10. Building an AutoEncoder - Step 5.mp4 12MB 10. Building a RNN/11. Building a RNN - Step 10.mp4 11MB 21. Building an AutoEncoder/15. Building an AutoEncoder - Step 10.mp4 11MB 3. ANN Intuition/9. Backpropagation.mp4 11MB 23. Regression & Classification Intuition/2. Simple Linear Regression Intuition - Step 1.mp4 9MB 10. Building a RNN/10. Building a RNN - Step 9.mp4 8MB 6. CNN Intuition/9. Summary.mp4 8MB 20. AutoEncoders Intuition/4. Overcomplete hidden layers.mp4 8MB 9. RNN Intuition/7. EXTRA LSTM Variations.mp4 7MB 10. Building a RNN/7. Building a RNN - Step 6.mp4 7MB 14. Building a SOM/2. How to get the dataset.mp4 6MB 17. Boltzmann Machine Intuition/8. How to get the dataset.mp4 6MB 21. Building an AutoEncoder/2. How to get the dataset.mp4 6MB 6. CNN Intuition/2. Plan of attack.mp4 6MB 17. Boltzmann Machine Intuition/7. Deep Boltzmann Machines.mp4 6MB 20. AutoEncoders Intuition/6. Denoising Autoencoders.mp4 6MB 15. Mega Case Study/2. Mega Case Study - Step 1.mp4 5MB 23. Regression & Classification Intuition/3. Simple Linear Regression Intuition - Step 2.mp4 5MB 20. AutoEncoders Intuition/7. Contractive Autoencoders.mp4 5MB 24. Data Preprocessing Template/1.1 Machine Learning A-Z (Codes and Datasets).zip 5MB 25. Logistic Regression Implementation/1.1 Machine Learning A-Z (Codes and Datasets).zip 5MB 4. Building an ANN/2.1 Machine Learning A-Z (Codes and Datasets).zip 5MB 13. SOMs Intuition/1. Plan of attack.mp4 5MB 3. ANN Intuition/2. Plan of Attack.mp4 5MB 20. AutoEncoders Intuition/8. Stacked Autoencoders.mp4 5MB 9. RNN Intuition/2. Plan of attack.mp4 4MB 19. ---------------------------- Part 6 - AutoEncoders ----------------------------/2. Plan of attack.mp4 4MB 13. SOMs Intuition/3. Why revisit K-Means.mp4 4MB 16. ------------------------- Part 5 - Boltzmann Machines -------------------------/2. Plan of attack.mp4 4MB 20. AutoEncoders Intuition/9. Deep Autoencoders.mp4 3MB 6. CNN Intuition/7. Step 3 - Flattening.mp4 3MB 20. AutoEncoders Intuition/2. A Note on Biases.mp4 2MB 23. Regression & Classification Intuition/4. Multiple Linear Regression Intuition.mp4 2MB 10. Building a RNN/1.1 Part 3 - Recurrent Neural Networks.zip 50KB 18. Building a Boltzmann Machine/8. Building a Boltzmann Machine - Step 4.srt 42KB 7. Building a CNN/8. Building a CNN - FINAL DEMO!.srt 41KB 21. Building an AutoEncoder/9. Building an AutoEncoder - Step 4.srt 41KB 9. RNN Intuition/5. LSTMs.srt 39KB 17. Boltzmann Machine Intuition/4. Restricted Boltzmann Machine.srt 38KB 18. Building a Boltzmann Machine/17. Building a Boltzmann Machine - Step 13.srt 36KB 3. ANN Intuition/3. The Neuron.srt 36KB 14. Building a SOM/5. Building a SOM - Step 3.srt 35KB 21. Building an AutoEncoder/11. Building an AutoEncoder - Step 6.srt 35KB 6. CNN Intuition/10. Softmax & Cross-Entropy.srt 35KB 18. Building a Boltzmann Machine/18. Building a Boltzmann Machine - Step 14.srt 34KB 24. Data Preprocessing Template/8. Data Preprocessing - Step 7.srt 34KB 4. Building an ANN/5. Building an ANN - Step 2.srt 33KB 23. Regression & Classification Intuition/5. Logistic Regression Intuition.srt 33KB 6. CNN Intuition/4. Step 1 - Convolution Operation.srt 32KB 9. RNN Intuition/3. The idea behind Recurrent Neural Networks.srt 32KB 21. Building an AutoEncoder/13. Building an AutoEncoder - Step 8.srt 31KB 6. CNN Intuition/3. What are convolutional neural networks.srt 31KB 17. Boltzmann Machine Intuition/5. Contrastive Divergence.srt 31KB 10. Building a RNN/14. Building a RNN - Step 13.srt 31KB 13. SOMs Intuition/4. K-Means Clustering (Refresher).srt 31KB 7. Building a CNN/3. Building a CNN - Step 2.srt 31KB 17. Boltzmann Machine Intuition/1. Boltzmann Machine.srt 30KB 7. Building a CNN/4. Building a CNN - Step 3.srt 30KB 9. RNN Intuition/4. The Vanishing Gradient Problem.srt 30KB 13. SOMs Intuition/5. How do Self-Organizing Maps Learn (Part 1).srt 29KB 13. SOMs Intuition/8. Reading an Advanced SOM.srt 29KB 6. CNN Intuition/6. Step 2 - Pooling.srt 29KB 9. RNN Intuition/6. Practical intuition.srt 28KB 15. Mega Case Study/4. Mega Case Study - Step 3.srt 28KB 21. Building an AutoEncoder/12. Building an AutoEncoder - Step 7.srt 28KB 3. ANN Intuition/6. How do Neural Networks learn.srt 27KB 21. Building an AutoEncoder/14. Building an AutoEncoder - Step 9.srt 27KB 4. Building an ANN/8. Building an ANN - Step 5.srt 27KB 3. ANN Intuition/5. How do Neural Networks work.srt 26KB 14. Building a SOM/3. Building a SOM - Step 1.srt 26KB 10. Building a RNN/5. Building a RNN - Step 4.srt 25KB 25. Logistic Regression Implementation/8. Logistic Regression - Step 7.srt 25KB 24. Data Preprocessing Template/6. Data Preprocessing - Step 5.srt 25KB 13. SOMs Intuition/10. EXTRA K-means Clustering (part 3).srt 25KB 25. Logistic Regression Implementation/3. Logistic Regression - Step 2.srt 25KB 18. Building a Boltzmann Machine/12. Building a Boltzmann Machine - Step 8.srt 25KB 4. Building an ANN/6. Building an ANN - Step 3.srt 24KB 7. Building a CNN/6. Building a CNN - Step 5.srt 24KB 21. Building an AutoEncoder/6. Building an AutoEncoder - Step 2.srt 24KB 21. Building an AutoEncoder/16. Building an AutoEncoder - Step 11.srt 24KB 1. Welcome to the course/1. What is Deep Learning.srt 24KB 24. Data Preprocessing Template/7. Data Preprocessing - Step 6.srt 23KB 21. Building an AutoEncoder/5. Building an AutoEncoder - Step 1.srt 23KB 18. Building a Boltzmann Machine/14. Building a Boltzmann Machine - Step 10.srt 23KB 17. Boltzmann Machine Intuition/2. Energy-Based Models (EBM).srt 22KB 4. Building an ANN/7. Building an ANN - Step 4.srt 22KB 20. AutoEncoders Intuition/1. Auto Encoders.srt 21KB 14. Building a SOM/6. Building a SOM - Step 4.srt 21KB 15. Mega Case Study/5. Mega Case Study - Step 4.srt 21KB 18. Building a Boltzmann Machine/11. Building a Boltzmann Machine - Step 7.srt 21KB 18. Building a Boltzmann Machine/3. Building a Boltzmann Machine - Introduction.srt 20KB 24. Data Preprocessing Template/5. Data Preprocessing - Step 4.srt 20KB 10. Building a RNN/6. Building a RNN - Step 5.srt 20KB 7. Building a CNN/2. Building a CNN - Step 1.srt 19KB 14. Building a SOM/4. Building a SOM - Step 2.srt 19KB 3. ANN Intuition/7. Gradient Descent.srt 19KB 10. Building a RNN/12. Building a RNN - Step 11.srt 19KB 4. Building an ANN/3. Building an ANN - Step 1.srt 19KB 18. Building a Boltzmann Machine/5. Building a Boltzmann Machine - Step 1.srt 18KB 18. Building a Boltzmann Machine/6. Building a Boltzmann Machine - Step 2.srt 18KB 13. SOMs Intuition/6. How do Self-Organizing Maps Learn (Part 2).srt 18KB 13. SOMs Intuition/2. How do Self-Organizing Maps Work.srt 18KB 24. Data Preprocessing Template/2. Data Preprocessing - Step 1.srt 18KB 10. Building a RNN/16. Building a RNN - Step 15.srt 18KB 3. ANN Intuition/8. Stochastic Gradient Descent.srt 18KB 13. SOMs Intuition/9. EXTRA K-means Clustering (part 2).srt 17KB 3. ANN Intuition/4. The Activation Function.srt 17KB 25. Logistic Regression Implementation/2. Logistic Regression - Step 1.srt 17KB 18. Building a Boltzmann Machine/7. Building a Boltzmann Machine - Step 3.srt 16KB 21. Building an AutoEncoder/7. Building an AutoEncoder - Step 3.srt 16KB 18. Building a Boltzmann Machine/10. Building a Boltzmann Machine - Step 6.srt 16KB 25. Logistic Regression Implementation/7. Logistic Regression - Step 6.srt 16KB 10. Building a RNN/8. Building a RNN - Step 7.srt 16KB 10. Building a RNN/15. Building a RNN - Step 14.srt 14KB 18. Building a Boltzmann Machine/13. Building a Boltzmann Machine - Step 9.srt 14KB 20. AutoEncoders Intuition/3. Training an Auto Encoder.srt 13KB 25. Logistic Regression Implementation/5. Logistic Regression - Step 4.srt 13KB 18. Building a Boltzmann Machine/15. Building a Boltzmann Machine - Step 11.srt 13KB 10. Building a RNN/3. Building a RNN - Step 2.srt 13KB 25. Logistic Regression Implementation/4. Logistic Regression - Step 3.srt 13KB 6. CNN Intuition/5. Step 1(b) - ReLU Layer.srt 12KB 7. Building a CNN/5. Building a CNN - Step 4.srt 12KB 10. Building a RNN/2. Building a RNN - Step 1.srt 12KB 10. Building a RNN/9. Building a RNN - Step 8.srt 11KB 23. Regression & Classification Intuition/2. Simple Linear Regression Intuition - Step 1.srt 11KB 25. Logistic Regression Implementation/6. Logistic Regression - Step 5.srt 11KB 17. Boltzmann Machine Intuition/6. Deep Belief Networks.srt 11KB 10. Building a RNN/4. Building a RNN - Step 3.srt 10KB 18. Building a Boltzmann Machine/9. Building a Boltzmann Machine - Step 5.srt 10KB 4. Building an ANN/1. Business Problem Description.srt 10KB 3. ANN Intuition/9. Backpropagation.srt 10KB 21. Building an AutoEncoder/10. Building an AutoEncoder - Step 5.srt 10KB 10. Building a RNN/13. Building a RNN - Step 12.srt 9KB 10. Building a RNN/11. Building a RNN - Step 10.srt 9KB 21. Building an AutoEncoder/15. Building an AutoEncoder - Step 10.srt 9KB 13. SOMs Intuition/7. Live SOM example.srt 9KB 15. Mega Case Study/3. Mega Case Study - Step 2.srt 9KB 6. CNN Intuition/9. Summary.srt 8KB 20. AutoEncoders Intuition/4. Overcomplete hidden layers.srt 8KB 6. CNN Intuition/2. Plan of attack.srt 7KB 9. RNN Intuition/7. EXTRA LSTM Variations.srt 7KB 15. Mega Case Study/2. Mega Case Study - Step 1.srt 7KB 17. Boltzmann Machine Intuition/3. Editing Wikipedia - Our Contribution to the World.srt 7KB 13. SOMs Intuition/1. Plan of attack.srt 7KB 10. Building a RNN/10. Building a RNN - Step 9.srt 7KB 24. Data Preprocessing Template/3. Data Preprocessing - Step 2.srt 6KB 17. Boltzmann Machine Intuition/7. Deep Boltzmann Machines.srt 6KB 10. Building a RNN/7. Building a RNN - Step 6.srt 6KB 23. Regression & Classification Intuition/3. Simple Linear Regression Intuition - Step 2.srt 6KB 3. ANN Intuition/2. Plan of Attack.srt 6KB 20. AutoEncoders Intuition/6. Denoising Autoencoders.srt 5KB 16. ------------------------- Part 5 - Boltzmann Machines -------------------------/2. Plan of attack.srt 5KB 20. AutoEncoders Intuition/7. Contractive Autoencoders.srt 5KB 9. RNN Intuition/2. Plan of attack.srt 5KB 13. SOMs Intuition/3. Why revisit K-Means.srt 5KB 19. ---------------------------- Part 6 - AutoEncoders ----------------------------/2. Plan of attack.srt 5KB 18. Building a Boltzmann Machine/19. Evaluating the Boltzmann Machine.html 4KB 1. Welcome to the course/8. Your Shortcut To Becoming A Better Data Scientist!.html 4KB 20. AutoEncoders Intuition/9. Deep Autoencoders.srt 4KB 6. CNN Intuition/7. Step 3 - Flattening.srt 4KB 14. Building a SOM/2. How to get the dataset.srt 3KB 17. Boltzmann Machine Intuition/8. How to get the dataset.srt 3KB 21. Building an AutoEncoder/2. How to get the dataset.srt 3KB 20. AutoEncoders Intuition/8. Stacked Autoencoders.srt 3KB 26. Bonus Lectures/1. YOUR SPECIAL BONUS.html 3KB 1. Welcome to the course/6. FAQBot!.html 3KB 20. AutoEncoders Intuition/2. A Note on Biases.srt 3KB 21. Building an AutoEncoder/17. THANK YOU bonus video.srt 2KB 23. Regression & Classification Intuition/4. Multiple Linear Regression Intuition.srt 2KB 1. Welcome to the course/2. Updates on Udemy Reviews.srt 2KB 10. Building a RNN/1. IMPORTANT NOTE.html 2KB 11. Evaluating and Improving the RNN/1. Evaluating the RNN.html 2KB 4. Building an ANN/2. IMPORTANT NOTE.html 2KB 16. ------------------------- Part 5 - Boltzmann Machines -------------------------/1. Welcome to Part 5 - Boltzmann Machines.html 2KB 21. Building an AutoEncoder/8. Homework Challenge - Coding Exercise.html 2KB 7. Building a CNN/1. IMPORTANT NOTE.html 1KB 21. Building an AutoEncoder/3. Installing PyTorch.html 1KB 1. Welcome to the course/3. BONUS Learning Paths.html 1KB 18. Building a Boltzmann Machine/2. Installing PyTorch.html 1KB 11. Evaluating and Improving the RNN/2. Improving the RNN.html 1KB 7. Building a CNN/7. Quick Note.html 1KB 1. Welcome to the course/4. BONUS Meet Your Instructors.html 1KB 8. ---------------------- Part 3 - Recurrent Neural Networks ----------------------/1. Welcome to Part 3 - Recurrent Neural Networks.html 1KB 19. ---------------------------- Part 6 - AutoEncoders ----------------------------/1. Welcome to Part 6 - AutoEncoders.html 1KB 25. Logistic Regression Implementation/1. Important Instructions.html 970B 24. Data Preprocessing Template/1. Important Instructions.html 929B 22. ------------------- Annex - Get the Machine Learning Basics -------------------/1. Annex - Get the Machine Learning Basics.html 899B 14. Building a SOM/1. IMPORTANT NOTE.html 794B 18. Building a Boltzmann Machine/1. IMPORTANT NOTE.html 681B 15. Mega Case Study/1. IMPORTANT NOTE.html 679B 21. Building an AutoEncoder/1. IMPORTANT NOTE.html 675B 23. Regression & Classification Intuition/1. What You Need for Regression & Classification.html 648B 1. Welcome to the course/5. Some Additional Resources!!.html 611B 4. Building an ANN/4. Check out our free course on ANN for Regression.html 533B 6. CNN Intuition/1. What You'll Need for CNN.html 375B 3. ANN Intuition/1. What You'll Need for ANN.html 374B 9. RNN Intuition/1. What You'll Need for RNN.html 366B 18. Building a Boltzmann Machine/4. Same Data Preprocessing in Parts 5 and 6.html 349B 21. Building an AutoEncoder/4. Same Data Preprocessing in Parts 5 and 6.html 348B 12. ------------------------ Part 4 - Self Organizing Maps ------------------------/1. Welcome to Part 4 - Self Organizing Maps.html 333B 1. Welcome to the course/7. Get the materials.html 330B 2. --------------------- Part 1 - Artificial Neural Networks ---------------------/1. Welcome to Part 1 - Artificial Neural Networks.html 309B 5. -------------------- Part 2 - Convolutional Neural Networks --------------------/1. Welcome to Part 2 - Convolutional Neural Networks.html 280B 0. Websites you may like/[FCS Forum].url 133B 0. Websites you may like/[FreeCourseSite.com].url 127B 0. Websites you may like/[CourseClub.ME].url 122B