589689.xyz

[ FreeCourseWeb ] Udemy - Machine Learning Basics- Building Regression Model in Python

  • 收录时间:2019-03-22 13:10:55
  • 文件大小:3GB
  • 下载次数:62
  • 最近下载:2020-11-17 23:51:20
  • 磁力链接:

文件列表

  1. 6. Linear Regression/18. Ridge regression and Lasso in Python.mp4 157MB
  2. 4. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4 124MB
  3. 5. Data Preprocessing/16. Bi-variate analysis and Variable transformation.mp4 114MB
  4. 6. Linear Regression/5. Assessing accuracy of predicted coefficients.mp4 104MB
  5. 6. Linear Regression/10. Multiple Linear Regression in Python.mp4 88MB
  6. 6. Linear Regression/16. Subset selection techniques.mp4 87MB
  7. 5. Data Preprocessing/10. Outlier Treatment in Python.mp4 87MB
  8. 2. Basics of Statistics/3. Describing data Graphically.mp4 82MB
  9. 5. Data Preprocessing/23. Correlation Analysis.mp4 81MB
  10. 3. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp4 81MB
  11. 6. Linear Regression/3. Simple Linear Regression in Python.mp4 79MB
  12. 5. Data Preprocessing/3. The Dataset and the Data Dictionary.mp4 79MB
  13. 5. Data Preprocessing/7. EDD in Python.mp4 75MB
  14. 3. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp4 74MB
  15. 3. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp4 73MB
  16. 5. Data Preprocessing/24. Correlation Analysis in Python.mp4 68MB
  17. 6. Linear Regression/8. The F - statistic.mp4 64MB
  18. 6. Linear Regression/14. Test train split in Python.mp4 58MB
  19. 3. Setting up Python and Jupyter Notebook/8. Working with Panda Library of Python.mp4 56MB
  20. 3. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp4 54MB
  21. 5. Data Preprocessing/17. Variable transformation and deletion in Python.mp4 53MB
  22. 3. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp4 51MB
  23. 6. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp4 50MB
  24. 6. Linear Regression/6. Assessing Model Accuracy RSE and R squared.mp4 50MB
  25. 6. Linear Regression/12. Test-train split.mp4 49MB
  26. 3. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp4 49MB
  27. 1. Introduction/2. Course contents.mp4 48MB
  28. 2. Basics of Statistics/4. Measures of Centers.mp4 46MB
  29. 4. Introduction to Machine Learning/2. Building a Machine Learning Model.mp4 45MB
  30. 5. Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4 41MB
  31. 6. Linear Regression/7. Multiple Linear Regression.mp4 39MB
  32. 6. Linear Regression/17. Shrinkage methods Ridge and Lasso.mp4 39MB
  33. 5. Data Preprocessing/21. Dummy variable creation in Python.mp4 34MB
  34. 5. Data Preprocessing/4. Importing Data in Python.mp4 32MB
  35. 6. Linear Regression/13. Bias Variance trade-off.mp4 30MB
  36. 5. Data Preprocessing/13. Missing Value Imputation in Python.mp4 29MB
  37. 2. Basics of Statistics/6. Measures of Dispersion.mp4 28MB
  38. 5. Data Preprocessing/9. Outlier Treatment.mp4 28MB
  39. 5. Data Preprocessing/12. Missing Value Imputation.mp4 28MB
  40. 5. Data Preprocessing/6. Univariate analysis and EDD.mp4 27MB
  41. 6. Linear Regression/9. Interpreting results of Categorical variables.mp4 27MB
  42. 2. Basics of Statistics/1. Types of Data.mp4 26MB
  43. 5. Data Preprocessing/1. Gathering Business Knowledge.mp4 25MB
  44. 5. Data Preprocessing/19. Non-usable variables.mp4 24MB
  45. 5. Data Preprocessing/2. Data Exploration.mp4 23MB
  46. 5. Data Preprocessing/15. Seasonality in Data.mp4 21MB
  47. 6. Linear Regression/15. Linear models other than OLS.mp4 19MB
  48. 3. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4 19MB
  49. 1. Introduction/1. Welcome to the course!.mp4 16MB
  50. 3. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp4 16MB
  51. 2. Basics of Statistics/2. Types of Statistics.mp4 13MB
  52. 6. Linear Regression/1. The Problem Statement.mp4 11MB
  53. 2. Basics of Statistics/5.1 Exercise 1.pdf.pdf 554KB
  54. 2. Basics of Statistics/7.1 Exercise 2.pdf.pdf 470KB
  55. 5. Data Preprocessing/3.1 House_Price.csv.csv 53KB
  56. 5. Data Preprocessing/4.1 House_Price.csv.csv 53KB
  57. 5. Data Preprocessing/5.1 Movie_collection_train.csv.csv 43KB
  58. 4. Introduction to Machine Learning/1. Introduction to Machine Learning.vtt 16KB
  59. 5. Data Preprocessing/16. Bi-variate analysis and Variable transformation.vtt 16KB
  60. 3. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.vtt 15KB
  61. 3. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.vtt 14KB
  62. 6. Linear Regression/5. Assessing accuracy of predicted coefficients.vtt 14KB
  63. 6. Linear Regression/20.1 Movie_collection_test.csv.csv 12KB
  64. 2. Basics of Statistics/3. Describing data Graphically.vtt 11KB
  65. 6. Linear Regression/16. Subset selection techniques.vtt 11KB
  66. 5. Data Preprocessing/10. Outlier Treatment in Python.vtt 11KB
  67. 6. Linear Regression/10. Multiple Linear Regression in Python.vtt 11KB
  68. 3. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.vtt 11KB
  69. 6. Linear Regression/3. Simple Linear Regression in Python.vtt 10KB
  70. 5. Data Preprocessing/23. Correlation Analysis.vtt 10KB
  71. 3. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.vtt 9KB
  72. 5. Data Preprocessing/7. EDD in Python.vtt 9KB
  73. 6. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.vtt 9KB
  74. 4. Introduction to Machine Learning/2. Building a Machine Learning Model.vtt 9KB
  75. 3. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.vtt 8KB
  76. 6. Linear Regression/8. The F - statistic.vtt 8KB
  77. 3. Setting up Python and Jupyter Notebook/8. Working with Panda Library of Python.vtt 7KB
  78. 6. Linear Regression/17. Shrinkage methods Ridge and Lasso.vtt 7KB
  79. 6. Linear Regression/6. Assessing Model Accuracy RSE and R squared.vtt 7KB
  80. 5. Data Preprocessing/3. The Dataset and the Data Dictionary.vtt 7KB
  81. 5. Data Preprocessing/17. Variable transformation and deletion in Python.vtt 6KB
  82. 2. Basics of Statistics/4. Measures of Centers.vtt 6KB
  83. 5. Data Preprocessing/24. Correlation Analysis in Python.vtt 6KB
  84. 6. Linear Regression/7. Multiple Linear Regression.vtt 5KB
  85. 5. Data Preprocessing/4. Importing Data in Python.vtt 5KB
  86. 5. Data Preprocessing/19. Non-usable variables.vtt 5KB
  87. 5. Data Preprocessing/21. Dummy variable creation in Python.vtt 5KB
  88. 2. Basics of Statistics/6. Measures of Dispersion.vtt 5KB
  89. 6. Linear Regression/9. Interpreting results of Categorical variables.vtt 5KB
  90. 2. Basics of Statistics/1. Types of Data.vtt 4KB
  91. 5. Data Preprocessing/20. Dummy variable creation Handling qualitative data.vtt 4KB
  92. 5. Data Preprocessing/9. Outlier Treatment.vtt 4KB
  93. 6. Linear Regression/15. Linear models other than OLS.vtt 4KB
  94. 5. Data Preprocessing/12. Missing Value Imputation.vtt 4KB
  95. 5. Data Preprocessing/13. Missing Value Imputation in Python.vtt 4KB
  96. 3. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.vtt 4KB
  97. 5. Data Preprocessing/1. Gathering Business Knowledge.vtt 3KB
  98. 5. Data Preprocessing/15. Seasonality in Data.vtt 3KB
  99. 5. Data Preprocessing/2. Data Exploration.vtt 3KB
  100. 5. Data Preprocessing/6. Univariate analysis and EDD.vtt 3KB
  101. 2. Basics of Statistics/2. Types of Statistics.vtt 3KB
  102. 1. Introduction/1. Welcome to the course!.vtt 3KB
  103. 3. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.vtt 2KB
  104. 6. Linear Regression/21. Course Conclusion.html 2KB
  105. 6. Linear Regression/1. The Problem Statement.vtt 1KB
  106. 5. Data Preprocessing/5. Project exercise 1.html 431B
  107. 6. Linear Regression/19. Project Exercise 10.html 424B
  108. 2. Basics of Statistics/5. Practice Exercise 1.html 357B
  109. 6. Linear Regression/11. Project Exercise 9.html 327B
  110. How to Support [ FreeCourseWeb.com ] for Free.txt 323B
  111. 6. Linear Regression/4. Project Exercise 8.html 322B
  112. 6. Linear Regression/20. Final Project Exercise.html 301B
  113. 2. Basics of Statistics/7. Practice Exercise 2.html 300B
  114. 5. Data Preprocessing/25. Project Exercise 7.html 288B
  115. 5. Data Preprocessing/18. Project Exercise 5.html 285B
  116. 5. Data Preprocessing/14. Project Exercise 4.html 238B
  117. 5. Data Preprocessing/11. Project Exercise 3.html 233B
  118. 5. Data Preprocessing/22. Project Exercise 6.html 202B
  119. 5. Data Preprocessing/8. Project Exercise 2.html 177B
  120. [ FreeCourseWeb.com ] Support Us.url 173B
  121. 4. Introduction to Machine Learning/3. Introduction to Machine learning quiz.html 166B
  122. Torrent Downloaded From GloDls.to.txt 84B