[] Udemy - Practical Machine Learning by Example in Python 收录时间:2024-03-29 00:44:39 文件大小:3GB 下载次数:1 最近下载:2024-03-29 00:44:39 磁力链接: magnet:?xt=urn:btih:95d11bf1715ebcbdabf34eb9a5b871202a26dd8f 立即下载 复制链接 文件列表 4. Foundations NumPy/6. Linear Regression Example.mp4 65MB 2. Python Quick Start/12. Classes.mp4 62MB 7. Foundations Pandas/2. Loading and inspecting data example.mp4 59MB 3. Example Logistic Regression/3. Data analysis.mp4 59MB 9. Example Sentiment Analysis/11. Transfer Learning Example.mp4 58MB 6. Example Image recognition/14. Hyperparameter tuning example.mp4 52MB 2. Python Quick Start/3. String formatting.mp4 52MB 4. Foundations NumPy/5. Introduction to Linear Regression.mp4 52MB 6. Example Image recognition/8. Model training.mp4 50MB 10. Example Fraud detection/9. Making predictions.mp4 49MB 3. Example Logistic Regression/8. Gradient descent.mp4 46MB 9. Example Sentiment Analysis/5. Data Preparation.mp4 44MB 8. Example Recommendations/8. Model definition.mp4 42MB 10. Example Fraud detection/2. Data analysis.mp4 42MB 3. Example Logistic Regression/12. Making predictions.mp4 40MB 7. Foundations Pandas/5. Sorting and transforming data example.mp4 40MB 9. Example Sentiment Analysis/12. Fine Tuning and Prediction.mp4 40MB 6. Example Image recognition/2. Data analysis.mp4 38MB 3. Example Logistic Regression/6. The forward function.mp4 38MB 8. Example Recommendations/5. Data preparation.mp4 36MB 1. Course Structure and Development Environment/8. Sharing Colab Notebooks.mp4 36MB 7. Foundations Pandas/7. Visualizing data.mp4 35MB 2. Python Quick Start/2. Basic Syntax.mp4 35MB 7. Foundations Pandas/3. Indexing and selecting data example.mp4 35MB 9. Example Sentiment Analysis/8. Model Training.mp4 35MB 2. Python Quick Start/11. Defining functions.mp4 35MB 7. Foundations Pandas/6. Aggregations example.mp4 34MB 2. Python Quick Start/13. File IO and Modules.mp4 34MB 4. Foundations NumPy/10. Visualizing data.mp4 34MB 1. Course Structure and Development Environment/2. Course Quick Tips.mp4 32MB 2. Python Quick Start/10. Dictionaries.mp4 32MB 4. Foundations NumPy/11. Images.mp4 32MB 6. Example Image recognition/7. Model definition.mp4 32MB 1. Course Structure and Development Environment/1. Course Structure and Development Environment.mp4 31MB 9. Example Sentiment Analysis/2. Data Analysis.mp4 31MB 3. Example Logistic Regression/11. Model training.mp4 30MB 8. Example Recommendations/12. Making predictions.mp4 30MB 8. Example Recommendations/9. Model training.mp4 29MB 8. Example Recommendations/2. Data analysis.mp4 29MB 9. Example Sentiment Analysis/7. Model Definition.mp4 29MB 5. Foundations Tensorflow/2. Model example.mp4 29MB 10. Example Fraud detection/4. Unsupervised learning.mp4 29MB 10. Example Fraud detection/11. Common questions.mp4 29MB 3. Example Logistic Regression/1. The problem.mp4 28MB 6. Example Image recognition/16. Common questions.mp4 28MB 9. Example Sentiment Analysis/4. Supervised Learning.mp4 28MB 3. Example Logistic Regression/17. Improving the model.mp4 27MB 1. Course Structure and Development Environment/4. Jupyter notebook Text Cells.mp4 27MB 6. Example Image recognition/5. Data preparation.mp4 27MB 8. Example Recommendations/4. Model selection.mp4 27MB 1. Course Structure and Development Environment/9. Artificial Intelligence, Machine Learning, and Deep Learning.mp4 25MB 10. Example Fraud detection/7. Model training.mp4 25MB 4. Foundations NumPy/2. Creating data with NumPy.mp4 25MB 3. Example Logistic Regression/10. Backpropagation.mp4 24MB 9. Example Sentiment Analysis/10. Transfer Learning with BERT.mp4 24MB 5. Foundations Tensorflow/5. Training example.mp4 24MB 2. Python Quick Start/7. Flow control.mp4 24MB 5. Foundations Tensorflow/12. The Three Body Problem.mp4 23MB 1. Course Structure and Development Environment/6. Jupyter notebook Math Markup and Magic Commands.mp4 23MB 6. Example Image recognition/6. CNN Model Layers.mp4 23MB 6. Example Image recognition/4. Model selection.mp4 23MB 6. Example Image recognition/13. Hyperparameter tuning.mp4 22MB 2. Python Quick Start/8. Lists.mp4 22MB 10. Example Fraud detection/1. The problem.mp4 22MB 3. Example Logistic Regression/5. The model.mp4 22MB 10. Example Fraud detection/6. Model definition.mp4 21MB 3. Example Logistic Regression/7. Loss and cost functions.mp4 20MB 2. Python Quick Start/6. Type conversion.mp4 20MB 8. Example Recommendations/15. Common questions.mp4 20MB 6. Example Image recognition/1. The problem.mp4 19MB 5. Foundations Tensorflow/4. Activation functions.mp4 19MB 5. Foundations Tensorflow/7. Loss functions.mp4 19MB 3. Example Logistic Regression/15. Test vs. train accuracy.mp4 19MB 8. Example Recommendations/13. Error analysis.mp4 19MB 3. Example Logistic Regression/16. Speeding up training.mp4 18MB 5. Foundations Tensorflow/1. About this section.mp4 18MB 8. Example Recommendations/7. Embedding layers.mp4 17MB 8. Example Recommendations/1. The problem.mp4 17MB 4. Foundations NumPy/9. Statistics and linear algebra.mp4 17MB 1. Course Structure and Development Environment/3. Introduction to Jupyter Notebook.mp4 17MB 10. Example Fraud detection/5. Data preparation.mp4 17MB 5. Foundations Tensorflow/8. Optimizers.mp4 16MB 2. Python Quick Start/4. Literal string interpolation.mp4 16MB 5. Foundations Tensorflow/11. Saving and restoring models.mp4 16MB 6. Example Image recognition/11. Error analysis.mp4 15MB 1. Course Structure and Development Environment/5. Jupyter notebook Code Cells.mp4 15MB 4. Foundations NumPy/3. Basic operations.mp4 15MB 3. Example Logistic Regression/2. Machine Learning Development Process.mp4 14MB 4. Foundations NumPy/8. More Complex Models.mp4 14MB 5. Foundations Tensorflow/3. Model layers.mp4 13MB 9. Example Sentiment Analysis/1. The Problem.mp4 13MB 6. Example Image recognition/10. Making predictions.mp4 12MB 11. Next steps/1. Next steps.mp4 12MB 4. Foundations NumPy/13. Reshaping data.mp4 11MB 7. Foundations Pandas/1. What is Pandas and why is it useful.mp4 9MB 4. Foundations NumPy/1. What is NumPy and why it is needed.mp4 8MB 2. Python Quick Start/1. About this section.mp4 7MB 2. Python Quick Start/15. Prompting for passwords.mp4 7MB 5. Foundations Tensorflow/10. Prediction example.mp4 7MB 8. Example Recommendations/11. Predictions.mp4 6MB 11. Next steps/2. Thank you.mp4 3MB 2. Python Quick Start/12. Classes.srt 16KB 4. Foundations NumPy/6. Linear Regression Example.srt 16KB 4. Foundations NumPy/5. Introduction to Linear Regression.srt 14KB 3. Example Logistic Regression/3. Data analysis.srt 12KB 10. Example Fraud detection/9. Making predictions.srt 12KB 3. Example Logistic Regression/12. Making predictions.srt 12KB 3. Example Logistic Regression/8. Gradient descent.srt 12KB 8. Example Recommendations/8. Model definition.srt 11KB 2. Python Quick Start/11. Defining functions.srt 11KB 6. Example Image recognition/2. Data analysis.srt 11KB 9. Example Sentiment Analysis/11. Transfer Learning Example.srt 10KB 2. Python Quick Start/13. File IO and Modules.srt 10KB 9. Example Sentiment Analysis/5. Data Preparation.srt 10KB 2. Python Quick Start/3. String formatting.srt 9KB 9. Example Sentiment Analysis/12. Fine Tuning and Prediction.srt 9KB 9. Example Sentiment Analysis/8. Model Training.srt 9KB 7. Foundations Pandas/2. Loading and inspecting data example.srt 9KB 3. Example Logistic Regression/11. Model training.srt 9KB 1. Course Structure and Development Environment/2. Course Quick Tips.srt 9KB 2. Python Quick Start/2. Basic Syntax.srt 9KB 8. Example Recommendations/5. Data preparation.srt 9KB 6. Example Image recognition/14. Hyperparameter tuning example.srt 8KB 1. Course Structure and Development Environment/8. Sharing Colab Notebooks.srt 8KB 10. Example Fraud detection/2. Data analysis.srt 8KB 4. Foundations NumPy/11. Images.srt 8KB 3. Example Logistic Regression/6. The forward function.srt 7KB 7. Foundations Pandas/5. Sorting and transforming data example.srt 7KB 2. Python Quick Start/4. Literal string interpolation.srt 7KB 2. Python Quick Start/7. Flow control.srt 7KB 6. Example Image recognition/8. Model training.srt 7KB 2. Python Quick Start/8. Lists.srt 7KB 7. Foundations Pandas/7. Visualizing data.srt 7KB 9. Example Sentiment Analysis/7. Model Definition.srt 7KB 2. Python Quick Start/10. Dictionaries.srt 7KB 8. Example Recommendations/12. Making predictions.srt 7KB 3. Example Logistic Regression/17. Improving the model.srt 7KB 7. Foundations Pandas/3. Indexing and selecting data example.srt 7KB 5. Foundations Tensorflow/2. Model example.srt 7KB 9. Example Sentiment Analysis/10. Transfer Learning with BERT.srt 7KB 8. Example Recommendations/4. Model selection.srt 6KB 3. Example Logistic Regression/10. Backpropagation.srt 6KB 8. Example Recommendations/9. Model training.srt 6KB 10. Example Fraud detection/7. Model training.srt 6KB 10. Example Fraud detection/11. Common questions.srt 6KB 3. Example Logistic Regression/15. Test vs. train accuracy.srt 6KB 4. Foundations NumPy/10. Visualizing data.srt 6KB 6. Example Image recognition/6. CNN Model Layers.srt 6KB 4. Foundations NumPy/9. Statistics and linear algebra.srt 6KB 10. Example Fraud detection/4. Unsupervised learning.srt 6KB 6. Example Image recognition/5. Data preparation.srt 6KB 6. Example Image recognition/11. Error analysis.srt 6KB 4. Foundations NumPy/2. Creating data with NumPy.srt 6KB 1. Course Structure and Development Environment/1. Course Structure and Development Environment.srt 6KB 1. Course Structure and Development Environment/9. Artificial Intelligence, Machine Learning, and Deep Learning.srt 6KB 3. Example Logistic Regression/5. The model.srt 5KB 8. Example Recommendations/13. Error analysis.srt 5KB 2. Python Quick Start/6. Type conversion.srt 5KB 9. Example Sentiment Analysis/2. Data Analysis.srt 5KB 10. Example Fraud detection/6. Model definition.srt 5KB 8. Example Recommendations/2. Data analysis.srt 5KB 9. Example Sentiment Analysis/4. Supervised Learning.srt 5KB 6. Example Image recognition/4. Model selection.srt 5KB 1. Course Structure and Development Environment/6. Jupyter notebook Math Markup and Magic Commands.srt 5KB 6. Example Image recognition/7. Model definition.srt 5KB 5. Foundations Tensorflow/5. Training example.srt 5KB 6. Example Image recognition/13. Hyperparameter tuning.srt 5KB 4. Foundations NumPy/3. Basic operations.srt 5KB 6. Example Image recognition/16. Common questions.srt 5KB 3. Example Logistic Regression/1. The problem.srt 5KB 5. Foundations Tensorflow/4. Activation functions.srt 5KB 3. Example Logistic Regression/7. Loss and cost functions.srt 5KB 5. Foundations Tensorflow/7. Loss functions.srt 4KB 4. Foundations NumPy/8. More Complex Models.srt 4KB 5. Foundations Tensorflow/11. Saving and restoring models.srt 4KB 8. Example Recommendations/7. Embedding layers.srt 4KB 7. Foundations Pandas/6. Aggregations example.srt 4KB 3. Example Logistic Regression/16. Speeding up training.srt 4KB 1. Course Structure and Development Environment/3. Introduction to Jupyter Notebook.srt 4KB 1. Course Structure and Development Environment/5. Jupyter notebook Code Cells.srt 4KB 10. Example Fraud detection/5. Data preparation.srt 4KB 6. Example Image recognition/1. The problem.srt 4KB 3. Example Logistic Regression/2. Machine Learning Development Process.srt 4KB 10. Example Fraud detection/1. The problem.srt 4KB 4. Foundations NumPy/13. Reshaping data.srt 4KB 5. Foundations Tensorflow/12. The Three Body Problem.srt 4KB 8. Example Recommendations/15. Common questions.srt 4KB 8. Example Recommendations/1. The problem.srt 3KB 1. Course Structure and Development Environment/4. Jupyter notebook Text Cells.srt 3KB 6. Example Image recognition/10. Making predictions.srt 3KB 5. Foundations Tensorflow/1. About this section.srt 3KB 9. Example Sentiment Analysis/1. The Problem.srt 3KB 5. Foundations Tensorflow/8. Optimizers.srt 3KB 5. Foundations Tensorflow/3. Model layers.srt 3KB 6. Example Image recognition/19. What you learned in this section.html 3KB 11. Next steps/1. Next steps.srt 2KB 5. Foundations Tensorflow/10. Prediction example.srt 2KB 2. Python Quick Start/15. Prompting for passwords.srt 2KB 7. Foundations Pandas/1. What is Pandas and why is it useful.srt 2KB 5. Foundations Tensorflow/13. What you learned in this section.html 2KB 3. Example Logistic Regression/18. What you learned in this section.html 2KB 4. Foundations NumPy/1. What is NumPy and why it is needed.srt 1KB 10. Example Fraud detection/13. What you learned in this section.html 1KB 2. Python Quick Start/1. About this section.srt 1KB 8. Example Recommendations/11. Predictions.srt 1KB 8. Example Recommendations/16. What you learned in this section.html 1KB 4. Foundations NumPy/14. What you learned in this section.html 823B 1. Course Structure and Development Environment/10. What you learned in this section.html 674B 2. Python Quick Start/16. What you learned in this section.html 584B 7. Foundations Pandas/9. What you learned in this section.html 555B 11. Next steps/2. Thank you.srt 538B 9. Example Sentiment Analysis/14. What you learned in this section.html 425B 5. Foundations Tensorflow/12.2 New Neural Network Could Solve The Three-Body Problem 100 Million Times Faster.html 174B 1. Course Structure and Development Environment/8.1 Saving notebooks to Github or Drive.html 170B 3. Example Logistic Regression/3.1 Github repo.html 159B 7. Foundations Pandas/5.1 Sorting data.html 153B 9. Example Sentiment Analysis/2.2 Github repo.html 149B 1. Course Structure and Development Environment/7. Introduction to Notebooks.html 148B 10. Example Fraud detection/10. Prediction and error analysis.html 148B 10. Example Fraud detection/12. Improving the model.html 148B 10. Example Fraud detection/3. Analyze credit card data set.html 148B 10. Example Fraud detection/8. Training the model.html 148B 2. Python Quick Start/14. Plot several math functions.html 148B 2. Python Quick Start/5. Experiment with string formatting.html 148B 2. Python Quick Start/9. Dot product.html 148B 3. Example Logistic Regression/13. Training a model.html 148B 3. Example Logistic Regression/14. Optional Wine Classification.html 148B 3. Example Logistic Regression/4. Analyze Iris flower data set.html 148B 3. Example Logistic Regression/9. Experiment with gradient descent.html 148B 4. Foundations NumPy/12. Visualizing data.html 148B 4. Foundations NumPy/4. Experiment with NumPy.html 148B 4. Foundations NumPy/7. Experiment with Linear Regression.html 148B 5. Foundations Tensorflow/6. Train a basic model.html 148B 5. Foundations Tensorflow/9. Experiment with optimizers.html 148B 6. Example Image recognition/12. Prediction and error analysis.html 148B 6. Example Image recognition/15. Model improvement.html 148B 6. Example Image recognition/17. Optional Real images.html 148B 6. Example Image recognition/18. Optional Other image types.html 148B 6. Example Image recognition/3. Analyze MNIST data set.html 148B 6. Example Image recognition/9. Training a model.html 148B 7. Foundations Pandas/4. Experiment with Pandas.html 148B 7. Foundations Pandas/8. Visualizing data with Pandas.html 148B 8. Example Recommendations/10. Training the model.html 148B 8. Example Recommendations/14. Making recommendations and error analysis.html 148B 8. Example Recommendations/3. Analyze MovieLens data set.html 148B 8. Example Recommendations/6. Prepare data.html 148B 9. Example Sentiment Analysis/13. Transfer Learning with BERT.html 148B 9. Example Sentiment Analysis/3. Analyze Sentiment Data Set.html 148B 9. Example Sentiment Analysis/6. Prepare Data.html 148B 9. Example Sentiment Analysis/9. Training the Model.html 148B 1. Course Structure and Development Environment/3.2 IBM Watson Studio Notebooks.html 147B 2. Python Quick Start/3.2 printf style formatting.html 139B 5. Foundations Tensorflow/4.2 Tensorflow activations.html 138B 5. Foundations Tensorflow/2.1 Sequential models.html 137B 5. Foundations Tensorflow/8.2 Tensorflow optimizers.html 137B 7. Foundations Pandas/7.1 Pandas visualization user guide.html 135B 5. Foundations Tensorflow/7.1 Loss functions.html 133B 5. Foundations Tensorflow/10.1 Model API.html 132B 5. Foundations Tensorflow/11.1 Model API.html 132B 7. Foundations Pandas/3.1 User Guide Indexing and Selecting Data.html 130B 9. Example Sentiment Analysis/2.1 Data set.html 129B 7. Foundations Pandas/6.1 Pandas group by API.html 128B [Tutorialsplanet.NET].url 128B 8. Example Recommendations/15.2 BellKor solution.html 126B 1. Course Structure and Development Environment/4.1 Markdown cheat sheet.html 125B 7. Foundations Pandas/2.2 Pandas IO.html 124B 4. Foundations NumPy/9.2 Statistics functions.html 122B 2. Python Quick Start/3.1 Format string syntax.html 120B 8. Example Recommendations/15.1 Other solutions.html 120B 10. Example Fraud detection/11.1 Building Autoencoders in Keras.html 118B 4. Foundations NumPy/9.1 Linear algebra.html 118B 5. Foundations Tensorflow/8.1 Stochastic gradient descent and related optimizers.html 118B 9. Example Sentiment Analysis/1.2 Natural Language Processing (NLP).html 118B 9. Example Sentiment Analysis/4.1 Natural Language Processing (NLP).html 118B 1. Course Structure and Development Environment/3.6 AWS Sagemaker Notebook Instances.html 117B 6. Example Image recognition/7.2 Sequential model guide.html 117B 8. Example Recommendations/8.1 Keras functional API.html 115B 8. Example Recommendations/2.1 Collaborative filtering article.html 114B 4. Foundations NumPy/11.3 Image manipulation with NumPy.html 113B 4. Foundations NumPy/11.1 Hughes 500.html 112B 1. Course Structure and Development Environment/1.1 Github repo.html 110B 5. Foundations Tensorflow/2.2 Github repo.html 110B 5. Foundations Tensorflow/4.1 Activation functions.html 110B 5. Foundations Tensorflow/12.1 Three Body Problem.html 109B 9. Example Sentiment Analysis/1.1 Sentiment Analysis.html 109B 1. Course Structure and Development Environment/6.1 LaTeX syntax.html 108B 4. Foundations NumPy/11.2 Aviation.html 104B 8. Example Recommendations/15.3 Netflix prize.html 104B 9. Example Sentiment Analysis/5.1 GloVe Vectors.html 101B 6. Example Image recognition/7.1 Keras CNN layers.html 99B 1. Course Structure and Development Environment/3.5 Kaggle Notebooks.html 96B 8. Example Recommendations/7.1 Keras Embedding Layers documentation.html 96B 1. Course Structure and Development Environment/3.1 Google Colaboratory.html 95B 10. Example Fraud detection/2.1 Github repo.html 94B 4. Foundations NumPy/10.1 Matplotlib home page.html 94B 6. Example Image recognition/1.1 The MNIST database of handwritten digits.html 94B 6. Example Image recognition/2.1 Example Github repository.html 94B 6. Example Image recognition/4.1 MNIST models and their accuracy.html 94B 7. Foundations Pandas/2.1 Github repo.html 94B 8. Example Recommendations/2.2 Github repo.html 94B 6. Example Image recognition/10.1 Keras Model API.html 91B 1. Course Structure and Development Environment/3.4 Microsoft Azure Notebooks.html 89B 4. Foundations NumPy/2.2 NumPy documentation.html 88B 5. Foundations Tensorflow/1.1 Tensorflow home page.html 87B 7. Foundations Pandas/1.1 Pandas Home Page.html 86B 1. Course Structure and Development Environment/3.3 CoCalc.html 80B 4. Foundations NumPy/2.1 NumPy home page.html 79B 1. Course Structure and Development Environment/[DesireCourse.Net].url 51B 6. Example Image recognition/[DesireCourse.Net].url 51B 9. Example Sentiment Analysis/[DesireCourse.Net].url 51B 1. Course Structure and Development Environment/[CourseClub.Me].url 48B 6. Example Image recognition/[CourseClub.Me].url 48B 9. Example Sentiment Analysis/[CourseClub.Me].url 48B